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A b s t r a c t  

Understanding program behavior is at the foundation of 
computer architecture and program optimization. Many pro- 
grams have wildly different behavior on even the very largest 
of scales (over the complete execution of the program). This 
realization has ramifications for  many architectural and com- 
piler techniques, from thread scheduling, to feedback directed 
optimizations, to the way programs are simulated. However, 
in order to take advantage of time-varying behavior, we .must 
first develop the analytical tools necessary to automatically 
and efficiently analyze program behavior over large sections 
of execution. 

Our goal is to develop automatic techniques that are ca- 
pable of finding and exploiting the Large Scale Behavior of 
programs (behavior seen over billions of instructions). The 
first step towards this goal is the development of a hardware 
independent metric that can concisely summarize the behav- 
ior of an arbitrary section of execution in a program. To 
this end we examine the use of Basic Block Vectors. We 
quantify the effectiveness of Basic Block Vectors in capturing 
program behavior across several different architectural met- 
rics, explore the large scale behavior of  several programs, and 
develop a set of  algorithms based on clustering capable of an- 
alyzing this behavior. We then demonstrate an application of 
this technology to automatically determine where to simulate 
for a program to help guide computer architecture research. 

1. INTRODUCTION 
Programs can have wildly different behavior over their run 

time, and these behaviors can be seen even on the largest of 
scales. Understanding these large scale program behaviors 
can unlock many new optimizations. These range from new 
thread scheduling algorithms that  make use of information on 
when a thread's behavior changes, to feedback directed op- 
timizations targeted at not only the aggregate performance 
of the code but individual phases of execution, to creating 
simulations that  accurately model full program behavior. To 
enable these optimizations, we must first develop the analyt- 
ical tools necessary to automatically and efficiently analyze 

Permission to make digital or hard copies of all or part of this work for 
personal or c lassroom use is granted without fee provided that copies are 
not made or distributed for profit or commercia l  advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise,  to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
ASPLOSX, 10/02, San Jose, CA, USA. 
Copyright 2002 ACM 1-58113-574-2/02/0010 ...$5.00. 

program behavior over large sections of execution. 
In order to perform such an analysis we need to develop a 

hardware independent metric that  can concisely summarize 
the behavior of an arbitrary section of execution in a pro- 
gram. In [19], we presented the use of Basic Block Vectors 
(BBV), which uses the structure of the program that  is ex- 
ercised during execution to determine where to simulate. A 
BBV represents the code blocks executed during a given in- 
terval of execution. Our goal was to find a single continuous 
window of executed instructions that  match the whole pro- 
gram's execution, so that  this smaller window of execution 
can be used for simulation instead of executing the program 
to completion. Using the BBVs provided us with a hardware 
independent way of finding this small representative window. 

In this paper we examine the use of BBVs for analyzing 
large scale program behavior. We use BBVs to explore the 
large scale behavior of several programs and discover the 
ways in which common patterns, and code, repeat themselves 
over the course of execution. We quantify the effectiveness of 
basic block vectors in capturing this program behavior across 
several different architectural metrics (such as IPC, branch, 
and cache miss rates). 

In addition to this, there is a need for a way of classifying 
these repeating patterns so that  this information can be used 
for optimization. We show that  this problem of classifying 
sections of execution is related to the problem of cluster- 
ing from machine learning, and we develop an algorithm to 
quickly and effectively find these sections based on clustering. 
Our techniques automatically break the full execution of the 
program up into several sets, where the elements of each set 
are very similar. Once this classification is completed, anal- 
ysis and optimization can be performed on a per-set basis. 

We demonstrate an application of this cluster-based be- 
havior analysis to simulation methodology for computer ar- 
chitecture research. By making use of clustering information 
we are able to accurately capture the behavior of a whole 
program by taking simulation results from representatives of 
each cluster and weighing them appropriately. This results 
in finding a set of simulation points that  when combined ac- 
curately represents the target application and input, which 
in turn allows the behavior of even very complicated pro- 
grams such as gcc to be captured with a small amount of 
simulation time. We provide simulation points (points in the 
program to start  execution at) for Alpha binaries of a l l  of the 
SpEC 2000 programs. In addition, we validate these simula- 
tion points with the IPC, branch, and cache miss rates found 
for complete execution of the SPEC 2000 programs. 

The rest of the paper is laid out as follows. First, a sum- 
mary of the methodology used in this research is described 
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in Section 2. Section 3 presents a brief review of basic block 
vectors and an in depth look into the proposed techniques 
and algorithms for identifying large scale program behaviors, 
and an analysis of their use on several programs. Section 4 
describes how clustering can be used to analyze program be- 
havior, and describes the clustering methods used in detail. 
Section 5 examines the use of the techniques presented in 
Sections 3 and 4 on an example problem: finding where to 
simulate in a program to achieve results representative of full 
program behavior. Related work is discussed in Section 6, 
and the techniques presented are summarized in Section 7. 

2. METHODOLOGY 
In this paper we used both ATOM [21] and SimpleScalar 

3.0c [3] to perform our analysis and gather our results for 
the Alpha AXP ISA. ATOM is used to quickly gather pro- 
filing information about the code executed for a program. 
SimpleScalar is used to validate the phase behavior we found 
when clustering our basic block profiles showing that  this 
corresponds to the phase behavior in the programs perfor- 
mance and architecture metrics. The baseline microarchitec- 
ture model we simulated is detailed in Table 1. We simulate 
an aggressive 8-way dynamically scheduled microprocessor 
with a two level cache design. Simulation is execution-driven, 
including execution down any speculative path until the de- 
tection of a fault, TLB miss, or branch mis-prediction. 

We analyze and simulated all of the SPEC 2000 bench- 
marks compiled for the Alpha ISA. The binaries we used 
in this study and how they were compiled can be found at: 
http ://~. s±mplescalar, tom/. 

3. USING BASIC BLOCK VECTORS 
A basic block is a section of code that  is executed from 

start  to finish with one entry and one exit. We use the fre- 
quencies with which basic blocks are executed as the metric 
to compare different sections of the application's execution 
to one another. The intuition behind this is that  the be- 
havior of the program at a given t ime is directly related to 
the code it is executing during that  interval, and basic block 
distributions provide us with this information. 

A program, when run for any interval of time, will execute 
each basic block a certain number of times. Knowing this 
information provides us with a fingerprint for that  interval 
of execution, and tells us where in the code the application 
is spending its time. The basic idea is that  knowing the ba- 
sic block distribution for two different intervals gives us two 
separate fingerprints which we can then compare to find out 
how similar the intervals are to one another. If the finger- 
prints are similar, then the two intervals spend about the 
same amount of time in the same code, and the performance 
of those two intervals should be similar. 

3.1 Basic Block Vector 
A Basic Block Vector (BBV) is a single dimensional array, 

where there is a single element in the array for each static 
basic block in the program. For the results in this paper, the 
basic block vectors are collected in intervals of 100 million 
instructions throughout the execution of a program. At the 
end of each interval, the number of times each basic block is 
entered during the interval is recorded and a 'new count for 
each basic block begins for the next interval of 100 million in- 
structions. Therefore, each element in the array is the count 
of how many times the corresponding basic block has been 
entered during an interval of execution, multiplied by the 

number of instructions in that  basic block. By multiplying 
in the number of instructions in each basic block we insure 
that  we weigh instructions the same regardless of whether 
they reside in a large or small basic block. We say that  a Ba- 
sic Block Vector which was gathered by counting basic block 
executions over an interval of N x 100 million instructions, 
is a Basic Block Vector of duration N. 

Because we are not interested in the actual count of basic 
block executions for a given interval, but rather the propor- 
tions between t ime spent in basic blocks, a BBV is normal- 
ized by having each element divided by the sum of all the 
elements in the vector. 

3.2 Basic Block Vector Difference 
In order to find patterns in the program we must first have 

some way of comparing two Basic Block Vectors. The oper- 
ation we desire takes as input two Basic Block Vectors, and 
outputs a single number which tells us how close they are to 
each other. There are several ways of comparing two vectors 
to one another, such as taking the dot product or finding 
the Euclidean or Manhat tan distance. In this paper we use 
both the Euclidean and Manhattan distances for comparing 
vectors. 

The Euclidean distance can be found by treatJing each vec- 
tor as a single point in D-dimensional space. The distance 
between two points is simply the square root of the sum of 
squares just  as in c ~ = a2+b 2. The formula for computing the 
Euclidean distance of two vectors a and b in D-dimensional 
space is given by: 

Euc l ideanDis t (a ,  b) = (a~ - b~) 2 
i = l  

The Manhat tan  distance on the other hand is the distance 
between two points if the only paths you can take are parallel 
to the axes. In two dimensions this is analogous to the dis- 
tance traveled if you were to go by car through, city blocks. 
This has the advantage that  it weighs more heavily differ- 
ences in each dimension (being closer in the x-dimension does 
not get you any closer in the y-dimension). The Manhat tan 
distance is computed by summing the absolute value of the 
element-wise subtraction of two vectors. For vectors a and b 
in D-dimensional space, the distance can be computed as: 

D 

M a n h a t t a n D i s t ( a ,  b) = E lai - blJ 
i = l  

Because we have normalized all of the vectors, the Manhat- 
tan distance will always be a single number between 0 and 2 
(because we normalize each BBV to sum to 1). This number 
can then be used to compare how closely related two intervals 
of execution are to one another. For the rest of this section 
we will be discussing distances in terms of Manhat tan dis- 
tance, because we found that  it more accurately' represented 
differences in our high-dimensional data. We present the Eu- 
clidean distance as it pertains to the clustering algorithms 
presented in Section 4, since it provides a more accurate rep- 
resentation for data with lower dimensions. 

3.3 Basic Block Similarity Matrix 
Now that  we have a method of comparing intervals of pro- 

gram execution to one another, we can now concentrate on 
finding phase-based behavior. A phase of program behav- 
ior can be defined in several ways. Past definitions are built 
around the idea of a phase being a contiguous interval of exe- 
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Instruction Cache 8k 2-way set-associative, 32 byte blocks, 1 cycle latency 
Data Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency 
Unified L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle latency 
Memory 150 cycle round trip access 
Branch Predictor hybrid - 8-bit gshare w/8k  2-bit predictors --I- a 8k bimodal predictor 
Out-of-Order Issue 
Mechanism 
Architecture Registers 
Functional Units 

out-of-order issue of up to 8 operations per cycle, 128 entry re-order buffer 
load/store queue, loads may execute when all prior store addresses are known 
32 integer, 32 floating point 
8-integer ALU, 4-load/store units, 2-FP adders, 2-integer MULT/DIV', 2-FP MULT/DIV 

Virtual Memory 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions complete 

T a b l e  1: B a s e l i n e  S i m u l a t i o n  Mode l .  

cution during which a measured program metric is relatively 
stable. We extend this notion of a phase to include all similar 
sections of execution regardless of temporal adjacency. 

A key observation from this paper is that the phase be- 
havior seen in any program metric is directly a function of 
the code being executed. Because of this we can use the 
comparison between the Basic Block Vectors as an approxi- 
mate bound on how closely related any other metrics will be 
between those two intervals. 

To find how intervals of execution relate to one another we 
create a Basic Block Similarity Matrix. The similarity matrix 
is an upper triangular N × N matrix, where N is the number 
of intervals in the program's execution. An entry at (x, y) in 
the matrix represents the Manhat tan  distance between the 
basic block vector at interval x and the basic block vector at 
interval y. 

Figures l(left and right) and 4(left) shows the similarity 
matrices for gzip, bzip,  and gcc using the Manhat tan dis- 
tance. The diagonal of the matrix represents the program's 
execution over time from start to completion. The darker 
the points, the more similar the intervals are (the Manhat- 
tan distance is closer to 0), and the lighter they are the more 
different they are (the Manhat tan  distance is closer to 2). 

The top left corner of each graph is the start  of program 
execution and is the origin of the graph, (0, 0), and the bot- 
tom right of the graph is the point (N - 1, N - 1) where N 
is the number of intervals that the full program execution 
was divided up into. The way to interpret the graph is to 
start considering points along the diagonal axis drawn. Each 
point is perfectly similar to itself, so the points directly on 
the axis all are drawn dark. Starting from a given point on 
the diagonal axis of the graph, you can begin to compare how 
that  point relates to it 's neighbors forward and backward in 
execution by tracing horizontally or vertically. If you wish 
to compare a given interval x with the interval at x + n, 
you simply start at the point (x, x) on the graph and trace 
horizontally to the right until  you reach (x, x -t- n). 

To examine the phase behavior of programs, let us first 
examine gzip because it has behavior on such a large scale 
that  it is easy to see. If we examine an interval taken from 70 
billion instructions into execution, in Figure 1 (left), this is 
directly in the middle of a large phase shown by the triangle 
block of dark color that surrounds this point. This means 
that  this interval is very similar to it 's neighbors both forward 
and backward in time. We can also see that  the execution at 
50 billion and 90 billion instructions is also very similar to the 
program behavior at 70 billion. We also note, while it may 
be hard to see in a printed version that  the phase interval at 
70 billion instructions is similar to the phases at interval 10 
and 30 billion, but they are not as similar as to those around 
50 and 90 billion. Compare this with the IPC and data cache 
miss rates for gzip  shown in Figure 2. Overall, Figure l(left) 
shows that  the phase behavior seen in thesimilar i ty  matrix 
lines up quite closely with the behavior of the program, with 

5 large phases (the first 2 being different from the last 3) each 
divided by a small phase, where all of the small phases are 
very similar to each other. 

The similarity matrix for b2ip (shown on the right of Fig- 
ure 1) is very interesting. Bzip has complicated behavior, 
with two large parts to it 's execution, compression and de- 
compression. This can readily be seen in the figure as the 
large dark triangular and square patches. The interesting 
thing about bz ip  is that  even within each of these sections of 
execution there is complex behavior. This, as will be shown 
later, makes the behavior of bz ip  impossible to capture using 
a small contiguous section of execution. 

A more complex case for finding phase behavior is gcc, 
which is shown on the left of Figure 4. This similarity ma- 
trix shows the results for gcc using the Manhat tan distance. 
The similarity matrix on the right will be explained in more 
detail in Section 4.2.1. This figure shows that gcc does have 
some regular behavior. It shows that,  even here, there is com- 
mon code shared between sections of execution, such as the 
intervals around 13 billion and 36 billion. In fact the strong 
dark diagonal line cutting through the matrix indicates that  
there is good amount of repetition between offset segments of 
execution. By analyzing the graph we can see that interval 
x is very similar to interval (x + 23.6B) for all x. 

Figures 2 and 5 show the time varying behavior of gzip 
and gcc. The average IPC and data cache miss rate is shown 
for each 100 million interval of execution over the complete 
execution of the program. The time varying results graphi- 
cally show the same phase behavior seen by looking at only 
the code executed. For example, the two phases for gcc at 13 
billion and 36 billion, shown to be very similar in Figure 4, 
are shown to have the same IPC and data cache miss rate in 
Figure 5. 

4. CLUSTERING 
The basic block vectors provide a compact and represen- 

tative summary of the program's behavior for intervals of 
execution. By examining the similarity between them, it is 
clear that  there exists a high level pattern to each program's 
execution. In order to make use of this behavior we need 
to start  by delineating a method of finding and represent- 
ing the information. Because there are so many intervals of 
execution that  are similar to one another, one efficient repre- 
sentation is to group the intervals together that  have similar 
behavior. This problem is analogous to a clustering problem. 
Later, in Section 5, we demonstrate how we use the clusters 
we discover to find multiple simulation points for irregular 
programs or inputs like gcc. By simulating only a single rep- 
resentative from each cluster, we can accurately represent the 
whole program's execution. 

4.1 Clustering Overview 
The goal of clustering is to divide a set of points into groups 

47 



www.manaraa.com

F i g u r e  1: B a s i c  b l o c k  s i m i l a r i t y  m a t r i x  for  t h e  p r o g r a m s  gzip-graphic ( s h o w n  le f t )  a n d  bzip-grap.hic ( s h o w n  
r i g h t ) .  T h e  d i a g o n a l  o f  t h e  m a t r i x  r e p r e s e n t s  t h e  p r o g r a m ' s  e x e c u t i o n  t o  c o m p l e t i o n  w i t h  u n i t s  in  b i l l i o n s  o f  
i n s t r u c t i o n s .  T h e  d a r k e r  t h e  p o i n t s ,  t h e  m o r e  s i m i l a r  t h e  i n t e r v a l s  a r e  ( t h e  M a n h a t t a n  d i s t a n c e  is c lose r  t o  
0) ,  a n d  t h e  l i g h t e r  t h e  p o i n t s  t h e  m o r e  d i f f e r e n t  t h e y  a r e  ( t h e  M a n h a t t a n  d i s t a n c e  is c l o s e r  t o  2).  
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F i g u r e  2: ( t o p  g r a p h )  T i m e  v a r y i n g  g r a p h  for  g z i p - g r a p h i c .  T h e  a v e r a g e  I P C  ( d r a w n  w i t h  so l id  l ine)  a n d  
L1 d a t a  c a c h e  mi s s  r a t e  ( d r a w n  w i t h  d o t t e d  l ine)  a r e  p l o t t e d  for  e v e r y  i n t e r v a l  (100 m i l l i o n  i n s t r u c t i o n s  o f  
e x e c u t i o n )  s h o w i n g  h o w  t h e s e  m e t r i c s  v a r y  o v e r  t h e  p r o g r a m ' s  e x e c u t i o n .  T h e  x - a x i s  r e p r e s e n t s  t h e  e x e c u t i o n  
o f  t h e  p r o g r a m  o v e r  t i m e ,  a n d  t h e  y - a x i s  t h e  p e r c e n t  o f  m a x  v a l u e  t h e  m e t r i c  h a d  d u r i n g  e x e c u t i o n .  T h e  
r e s u l t s  a r e  n o n - a c c u m u l a t i v e .  

F i g u r e  3: ( b o t t o m  g r a p h )  C l u s t e r  g r a p h  for  g z i p - g r a p h i c .  T h e  ful l  r u n  o f  t h e  e x e c u t i o n  is p a r t i t i o n e d  i n t o  a 
se t  o f  6 c l u s t e r s .  T h e  x - a x i s  is in i n s t r u c t i o n s  e x e c u t e d ,  a n d  t h e  g r a p h  s h o w s  for  e a c h  i n t e r v a l  o:f e x e c u t i o n  
( e v e r y  100 m i l l i o n  i n s t r u c t i o n s ) ,  w h i c h  c l u s t e r  t h e  i n t e r v a l  was  p l a c e d  in to .  
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F i g u r e  4: T h e  o r i g i n a l  b a s i c  b l o c k  s i m i l a r i t y  m a t r i x  for  t h e  p r o g r a m  gcc ( s h o w n  le f t ) ,  a n d  t h e  s i m i l a r i t y  m a t r i x  
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F i g u r e  5: ( t o p  g r a p h )  T i m e  v a r y i n g  g r a p h  for  gcc-166.  T h e  a v e r a g e  I P C  ( d r a w n  w i t h  so l id  l ine)  a n d  L1 d a t a  
c a c h e  m i s s  r a t e  ( d r a w n  w i t h  d o t t e d  l ine)  a r e  p l o t t e d  for  e v e r y  i n t e r v a l  (100 m i l l i o n  i n s t r u c t i o n s  o f  e x e c u t i o n )  
s h o w i n g  h o w  t h e s e  m e t r i c s  v a r y  o v e r  t h e  p r o g r a m ' s  e x e c u t i o n .  T h e  x - a x i s  r e p r e s e n t s  t h e  e x e c u t i o n  o f  t h e  
p r o g r a m  o v e r  t i m e ,  a n d  t h e  y - a x i s  t h e  p e r c e n t  o f  m a x  v a l u e  t h e  m e t r i c  h a d  d u r i n g  e x e c u t i o n .  T h e  r e s u l t s  a r e  
n o n - a c c u m u l a t i v e .  

F i g u r e  6: ( b o t t o m  g r a p h )  C l u s t e r  g r a p h  for  gcc-166.  T h e  full  r u n  o f  t h e  e x e c u t i o n  is p a r t i t i o n e d  i n to  a se t  o f  
4 c l u s t e r s .  T h e  x - a x i s  is in i n s t r u c t i o n s  e x e c u t e d ,  a n d  t h e  g r a p h  s h o w s  for  e a c h  i n t e r v a l  o f  e x e c u t i o n  ( e v e r y  
100 m i l l i o n  i n s t r u c t i o n s ) ,  w h i c h  c l u s t e r  t h e  i n t e r v a l  was  p l a c e d  in to .  
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such that points within each group are similar to one an- 
other (by some metric, often distance), and points in different 
groups are different from one another. This problem arises in 
other fields such as computer vision [10], document classifica- 
tion [22], and genomics [1], and as such it is an area of much 
active research. There are many clustering algorithms and 
many approaches to clustering. Classically, the two primary 
clustering approaches are Parti t ioning and Hierarchical: 

Partitioning algorithms choose an initial solution and then 
use iterative updates to find a better solution. Popular al- 
gorithms such as k-means [14] and Gaussian Expectation- 
Maximization [2, pages 59-73] are in this family. These al- 
gorithms tend to have run time that  is linear in the size of 
the dataset. 

Hierarchical algorithms [9] either combine together sim- 
ilar points (called agglomerative clustering, and conceptu- 
ally similar to Huffman encoding), or recursively divides the 
dataset into more groups (called divisive clustering). These 
algorithms tend to have run time that  is quadratic in the size 
of the dataset. 

4.2 Phase Finding Algorithm 
For our algorithm, we use random linear projection fol- 

lowed by k-means. We choose to use the k-means clustering 
algorithm, since it is a very fast and simple algorithm that  
yields good results. To choose the value of k, we use the 
Bayesian Information Criterion (BIC) score [11, 17]. The 
following steps summarize our algorithm, and then several of 
the steps are explained in more detail: 

1. Profile the basic blocks executed in each program to 
generate the basic block vectors for every 100 million 
instructions of execution. 

2. Reduce the dimension of the BBV data to 15 dimen- 
sions using random linear projection. 

3. Try the k-means clustering algorithm on the 
low-dimensional data for k values 1 to 10. Each run of 
k-means produces a clustering, which is a partit ion of 
the data into k different clusters. 

4. For each clustering (k ---- 1 . . .  10), score the fit of the 
clustering using the BIC. Choose the clustering with 
the smallest k, such that  it 's score is at least 90% as 
good as the best score. 

4.2.1 Random Projection 
For this clustering problem, we have to address the prob- 

lem of dimensionality. All clustering algorithms suffer from 
the so-called "curse of dimensionality", which refers to the 
fact that it becomes extremely hard to cluster data as the 
number of dimensions increases. For the basic block vectors, 
the number of dimensions is the number of executed basic 
blocks in the program, which ranges from 2,756 to 102,038 
for our experimental data, and could grow into the millions 
for very large programs. Another practical problem is that 
the running time of our clustering algorithm depends on the 
dimension of the data, making it slow if the dimension grows 
too large. 

Two ways of reducing the dimension of data are dimension 
selection and dimension reduction. Dimension selection sim- 
ply removes all but  a small number of the dimensions of the 
data, based on a measure of goodness of each dimension for 
describing the data. However, this throws away a lot of data 
in the dimensions which are ignored. Dimension reduction 

reduces the number of dimensions by creating a new lower- 
dimensional space and then projecting each data point into 
the new space (where the new space's dimensions are not 
directly related to the old space's dimensions). This is anal- 
ogous to taking a picture of 3 dimensional data at a random 
angle and projecting it onto a screen of 2 dimensions. 

For this work we choose to use random linear projection [5] 
to create a new low-dimensional space into which we pro jeSt 
the data. This is a simple and fast technique that  is very ef- 
fective at reducing the number of dimensions while retaining 
the properties of the data. There are two steps to reducing 
a dataset X (which is a matrix of basic block vectors and is 
of size Ni~t . . . .  Is x Dn~,mbb, where D,~mbb is the number of 
basic blocks in the pr9gram ) down to D n ~  dimensions using 
random linear projection: 

• Create a Dn~mbb X Dn~,  projection matrix M by choos- 
ing a random value for each matrix entry between -1 
and 1. 

• Multiply X times M to obtain the new lower-dimensional 
dataset X '  which wil'l be of size Nint . . . .  l~ x Dne~,. 

For clustering programs, we found that  using D n ~  = 
15 dimensions is sufficient to still differentiate the different 
phases of execution. Figure 7 shows why we chose to project 
the data down to 15 dimensions. The graph shows the num- 
ber of dimensions on the x-axis. The y-axis represents the k 
value found to be best on average, when the programs were 
projected down to the number of dimensions indicated by the 
x-axis. The best k is determined by the k with the highest 
BIC score, which is discussed in Section 4.2.3. The y-axis is 
shown as a percent of the maximum k seen for each program 
so that  the curve can be examined independent; of the actual 
number of clusters found for each program. The results show 
that  for 15 dimensions the number of clusters found begins 
to stabilize and only climbs slightly. Similar results were also 
found using a different method of finding k in [6]. 

The advantages of using linear projections are twofold. 
First, creating new vectors with a low dimension of 15 is 
extremely fast and can even be done at simulation time. Sec- 
ondly, using only 15 dimensions speeds up the k-means al- 
gorithm significantly, and reduces the memory requirements 
by several orders of magnitude over using the original basic 
block vectors. 

Figure 4 shows the similarity matrix for gcc on the left 
using original BBVs, whereas the similarity matrix on the 
right shows the same matrix but on the data that  has been 
projected down to 15 dimensions. For the reduced dimension 
data  we use the Euclidean distance to measure differences, 
rather than the Manhat tan distance used on the full data. 
After the projection, some information will be blurred, but  
overall the phases of execution that  are very similar with full 
dimensions can still be seen to have a strong similarity with 
only 15 dimensions. 

4.2.2 K-means 
The k-means algorithm is an iterative optimization algo- 

rithm, which executes as two phases, which eu:e repeated to 
convergence. The algorithm begins with a random assign- 
ment of k different centers, and begins its iterative process. 
The iterations are required because of the recursive nature 
of the algorithm; the cluster centers define the cluster mem- 
bership for each data point, but the data point memberships 
define the cluster centers. Each point in the data belongs to, 
and can be considered a member of, a single duster.  

50 



www.manaraa.com

100% - 

80% 

X 

60% 

8 40% 
m,= 
O el 

20% 

0% . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I 

0 10 20 30 40 50 

Number  of Dimensions 

F i g u r e  7: M o t i v a t i o n  for r a n d o m  p r o j e c t i o n  d o w n  
to  15 d i m e n s i o n s  (D----15). T h e  x - a x i s  is t h e  n u m -  
b e r  of  d i m e n s i o n s  of t h e  p r o j e c t i o n ,  and  t h e  y - a x i s  is 
t h e  p e r c e n t  o f  t h e  m a x  n u m b e r  o f  c l u s t e r s  f o u n d  for 
each  p r o g r a m  a v e r a g e d  over  all  spec  p r o g r a m s .  T h e  
resu l t s  s h o w  t h a t  as y o u  d e c r e a s e  t h e  n u m b e r  o f  di-  
m e n s i o n s  t o o  far ( t h e  l owes t  p o i n t  is two  d i m e n s i o n s )  
t h e  t r u e  c lus t er s  b e c o m e  co l l apsed  on  o n e  a n o t h e r ,  
an d  t h e  a l g o r i t h m  c a n n o t  f ind as  m a n y  c lus ters .  B y  
D = 1 5  m o s t  of th i s  effect  has  gone .  

We initialize the k cluster centers by choosing k random 
points from the data to be clustered. After initialization, the 
k-means algorithm proceeds in two phases which are repeated 
until  convergence: 

• For each data point being clustered, compare its dis- 
tance to each of the k cluster centers and assign it to 
(make it a member of) the cluster to which it is the 
closest. 

• For each cluster center, change its position to the cen- 
troid of all of the points in its cluster (from the mem- 
berships just computed). The centroid is computed as 
the average of all the data points in the cluster. 

This process is iterated until  membership (and hence clus- 
ter centers) cease to change between iterations. At this point 
the algorithm terminates, and the output  is a set of final clus- 
ter centers and a mapping of each point to the cluster that  
it belongs to. Since we have projected the data down to 15 
dimensions, we can quickly generate the clusters for k-means 
with k from 1 to 10. In doing this, there are efficient algo- 
rithms for comparing the clusters that are formed for these 
different values of k, and choosing one that is good but still 
uses a small value for k is the next problem. 

4.2.3 Bayesian Information Criterion 
To compare ancl evaluate the different clusters formed for 

different k, we use the Bayesian Information Criterion (BIC) 
as a measure of the "goodness of fit" of a clustering to a 
dataset. More formally, the BIC is an approximation to the 
probability of the clustering given the data that has been 
clustered. Thus, the larger the BIC score, the higher the 
probability that the clustering being scored is a "good fit" to 
the data being clustered. We use the BIC formulation given 
in I171 for clustering with k-means, however other formula- 
tions of the BIC could also be used. 

More formally, the BIG score is a penalized likelihood. 
There are two terms in the BIG: the likelihood and the penalty. 
The likelihood is a measure of how well the clustering models 
the data. To get the likelihood, each cluster is considered to 
be produced by a spherical Gaussian distribution, and the 
likelihood of the data in a cluster is the product of the prob- 
abilities of each point in the cluster given by the Gaussian. 
The likelihood for the whole dataset is just  the product of the 
likelihoods for all clusters. However, the likelihood tends to 
increase without bound as more clusters are added. There- 
fore the second term is a penalty that  offsets the likelihood 
growth based on the number of clusters. The BIG is formu- 
lated as 

BIG(D, k) = l(D]k) - ~ log(R) 

where l(DIk ) is the likelihood, R is the number of points in 
the data, and pj is the number of parameters to estimate, 
which is (k - 1) + dk + 1 for (k - 1) cluster probabilities, 
k cluster center estimates which each require d dimensions, 
and 1 variance estimate. To compute l(Dik) we use 

k 

l(D[k) = Z - - ~  log(21r)- ~ log(a 2) Ri2- 1 
i = l  

+R/log(P~i/R) 

where Ri is the number of points in the i th cluster, and a 2 
is the average variance of the Euclidean distance from each 
point to its cluster center. 

For a given program and inputs, the BIC score is calculated 
for each k-means clustering, for k from 1 to N. We then choose 
the clustering that achieves a BIG score that  is at least 90% 
of the spread between the largest and smallest BIG score 
that  the algorithm has seen. Figure 8 shows the benefit of 
choosing a BIG with a high value and its relationship with the 
variance in IPC seen for that  cluster. The y-axis shows the 
percent  of IPC variance seen for a given clustering, and the 
corresponding BIC score the clustering received. Each point 
on the graph represents the average or max IPC variance for 
all points in the range of =t:5% of the BIG score shown. The 
results show that picking clusterings that represent greater 
than 80% of the BIG score resulted in an IPC variance of less 
than 20% on average. The IPC variance was computed as the 
weighted sum of the IPC variance for each cluster, where the 
weight for a cluster is the number of points in that cluster. 
The IPC variance for each cluster is simply the variance of 
the IPC for all the points in that  cluster. 

4.3 Clusters and Phase Behavior 
Figures 3 and 6 show the 6 clusters formed for gzip and 

the 4 clusters formed for gcc. The X-axis corresponds to 
the execution of the program in billions of instructions, and 
each interval (each of 100 million instructions) is tagged to 
be in one of the N clusters (labeled on the Y-axis). These 
figures, just  as for Figures 1 and 4, show the execution of the 
programs to completion. 

For gzip, the full run of the execution is partitioned into 
a set of 6 clusters. Looking to Figure l(left) for comparison, 
we see that  the cluster behavior captured by our tool lines up 
quite closely with the behavior of the program. The majority 
of the points are contained by clusters 1,2,3 and 6. Clusters 
1 and 2 represent the large sections of execution which are 
similar to one another. Clusters 3 and 6 capture the smaller 
phases which lie in between these large phases, while cluster 
5 contains a small subset of the larger phases, and cluster 4 
represents the initialization phase. 
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F i g u r e  8: P l o t  of  ave r age  I P C  v a r i a n c e  a n d  m a x  I P C  
v a r i a n c e  ve r sus  t h e  B I C .  T h e s e  resu l t s  i n d i c a t e  t h a t  
for o u r  da t a ,  a c l u s t e r i n g  f o u n d  to  have  a B I C  score  
grea ter  t h a n  80% will  have ,  on  average ,  a n d  I P C  var i -  
a n c e  of  less t h a n  0.2. 

In the cluster graph for gcc, shown in Figure 6, the run 
is now partitioned into 4 different clusters. Looking to Fig- 
ure 4 for comparison, we see that  even the more complicated 
behavior of gcc is captured correctly by our tool. Clusters 
2 and 4 correspond to the dark boxes shown parallel to the 
diagonal axis. It  should also be noted that the projection 
does introduce some degree of error into the clustering. For 
example, the first group of points in cluster 2 are not really 
that similar to the other points in the cluster. Comparing 
the two similarity matrices in Figure 4, shows the introduc- 
tion of a dark band at (0,30) on the graph which was not in 
the original (un-projected) data. Despite these small errors, 
the clustering is still very good, and the impact of any such 
errors will be minimized in the next section. 

5. FINDING SIMULATION POINTS 
Modern computer architecture research relies heavily on 

cycle accurate simulation to help evaluate new architectural 
features. While the performance of processors continues to 
grow exponentially, the amount of complexity within a pro- 
cessor continues to grow at an even a faster rate. With each 
generation of processor more transistors are added, and more 
things are done in parallel on chip in a given cycle while at 
the same time cycle times continue to decrease. This grow- 
ing gap between speed and complexity means that the time 
to simulate a constant amount of processor time is growing. 
It is already to the point that executing programs fully to 
completion in a detailed simulator is no longer feasible for 
architectural studies. Since detailed simulation takes a great 
deal of processing power, only a small subset of a whole pro- 
gram can be simulated. 

SimpleScalar [3], one of the faster cycle-level simulators, 
can simulate around 400 million instructions per hour. Un- 
fortunately many of the new SPEC 2000 programs execute 
for 300 billion instructions or more. At 400 million instruc- 
tions per hour this will take approximately 1 month of CPU 
time. 

Because it is only feasible to execute a small portion of 
the program, it is very important that the section simulated 
is an accurate representation of the program's behavior as a 

whole. The basic block vector and cluster analysis presented 
in Sections 3 and 4 will allow us to make sure that this is the 
c a s e .  

5.1 Single Simulation Points 
In [19], we used basic block vectors to automatically find a 

single simulation point to potentially represent the complete 
execution of a program. A Simulation Point is a starting 
simulation place (in number of instructions executed from the 
start of execution) in a program's execution derived from our 
analysis. That  algorithm creates a target basic block vector, 
which is a BBV that  represents the complete execution of 
the program. The Manhat tan  distance between each interval 
BBV and the target BBV is computed. The BBV with the 
lowest Manhat tan  distance represents the single simulation 
point that  executes the code closest to the complete execution 
of the program. This approach is used to calculate the long 
single simulation points (LongSP) described below. 

In comparison, the single simulation point results in this 
paper are calculated by choosing the BBV that has the small- 
est Euclidean distance from the centroid of the whole dataset 
in the 15-dimensional space, a method which we find supe- 
rior to the original method. The 15-dimensional centroid is 
formed by taking the average of each dimension over all in- 
tervals in the cluster. 

Figure 9 shows the IPC estimated by executing only a 
single interval, all 100 million instructions long but  chosen 
by different methods, for all SPEC 2000 programs. This 
is shown in comparison to the IPC found by executing the 
program to completion. The results are from SimpleScalar 
using the architecture model described in Section 2, and all 
fast forwarding is done so that  all of the architecture struc- 
tures are completely warmed up when starting simulation (no 
cold-start effect). 

The first bar, labeled none, is the IPC found when exe- 
cuting only the first 100 million instructions t~-om the start  
of execution (without any fast forwarding). The second bar, 
FF-Billion shows the results after blindly fast forwarding 1 
billion instructions before start ing simulation. The third bar, 
SimPoint shows the IPC using our single sinmlation point 
analysis described above, and the last bar shows the IPC of 
simulating the program to completion (labeled Ful l ) .  Be- 
cause these are actual IPC values, values which are closer to 
the F u l l  bar are better. 

The results in Figure 9 shows that  the single simulation 
points are very close to the actual full execution of the pro- 
gram, especially when compared against the ad-hoc tech- 
niques. Starting simulation at the start  of the program re- 
sults in an average error of 210%, whereas blindly fast for- 
warding results in an average 80% IPC error. Using our single 
simulation point analysis we reduce the average IPC error to 
18%. These results show that  it is possible to reasonably cap- 
ture the behavior of the most programs using, a very small 
slice of execution. 

Table 2 shows the actual simulation points chosen along 
with the program counter (PC) and procedure name corre- 
sponding to the start  of the interval. If an input is not at- 
tached to the program name, then the default ref input was 
used. Columns 2 through 4 are in terms of the number of 
intervals (each 100 million instruction long). The first col- 
umn is the number of instructions executed by the program, 
on the specific input, when run to completion. The second 
column shows the end of initialization phase calculated as de- 
scribed in [19]. The third column shows the single simulation 
point automatically chosen as described abowe. This simu- 
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F i g u r e  9: S i m u l a t i o n  r e s u l t s  s t a r t i n g  s i m u l a t i o n  at  t h e  s tar t  o f  t h e  p r o g r a m  ( none ) ,  b l i n d l y  fast  f o r w a r d i n g  1 
b i l l i o n  i n s t r u c t i o n s ,  u s i n g  a s i n g l e  s i m u l a t i o n  p o i n t ,  and  t h e  I P C  o f  t h e  ful l  e x e c u t i o n  o f  t h e  p r o g r a m .  

lation point is used to fast forward to the point of desired 
execution. Some simulators, debuggers, or tracing environ- 
ments (e.g., gdb) provide the ability to fast forward based 
upon a program PC, and the number of times that  PC was 
executed. We therefore, provide the instruction PC for the 
start  of the simulation point, the procedure that  PC occurred 
in, and the number of times that  PC has to be executed in 
order to arrive at the desired simulation point. 

These results show that a single simulation point can be 
accurate for many programs, but  there is still a significant 
amount of error for programs like bzip,  gz ip  and gcc. This 
occurs because there are many different phases of execution 
in these programs, and a single simulation point will not ac- 
curately represent all of the different phases. To address this, 
we used our clustering analysis to find multiple simulation 
points to accurately capture these programs behavior, which 
we describe next. 

5.2 Multiple Simulation Points 
To support multiple simulation points, the simulator can 

be run from start to stop, only performing detailed simu- 
lation on the selected intervals. Or the simulation can be 
broken down into N simulations, where N is the number of 
clusters found via analysis, and each simulation is run sepa- 
rately. This has the further benefit of breaking the simulation 
down into parallel components that  can be distributed across 
many processors. This is the methodology we use in our sim- 
ulator. For both cases results from the separate simulation 
points need to be weighed and combined to arrive at overall 
performance for the program [4]. Care must be taken to com- 
bine statistics correctly (simply averaging will give incorrect 
results for statistics such as rates). 

Knowing the clustering alone is not sufficient to enable 
multiple point simulation because the cluster centers do not 
correspond to actual intervals of execution. Instead, we must 
first pick a representative for each cluster that  will be used to 
approximate the behavior of the the full cluster. In order to 
pick this representative, we choose for each cluster the actual 
interval that  is closest to the center (centroid) of the cluster. 

In addition to this, we weigh any use of this representative by 
the size of the cluster it is representing. If a cluster has only 
one point, i t 's representative will only have a small impact 
on the overall outcome of the program. 

Table 2 shows the multiple simulation points found for all 
of the SPEC 2000 benchmarks. For these results we lim- 
ited the number of clusters to be at most six for all but  the 
most complex programs. This was done, in order to limit the 
number of simulation points, which also limits the amount of 
warmup time needed to perform the overall simulation. The 
cluster formation algorithm in Section 4 takes as an input 
parameter the max number of clusters to be allowed. Each 
simulation point contains two numbers. The first number is 
the location of the simulation point in 100s of millions of in- 
structions. The second number in parentheses is the weight 
for that  simulation point, which is used to create an overall 
combined metric. Each simulation point corresponds to 100 
million instructions. 

Figure 10 shows the IPC results for multiple simulation 
points. The first bar shows our single simulation points sim- 
ulating for 100 million instructions. The second bar LongSP 
chooses a single simulation point, but the length of simula- 
tion is identical to the length used for multiple simulation 
points (which may go up to 1 billion instructions). This is 
to provide a fair comparison between the single simulation 
points and multiple. The Multiple bar shows results using 
the multiple simulation points, and the final bar is IPC for 
full simulation. As in Figure 9, the closer the bar is to Fu l l ,  
the better. 

The results show that  the average IPC error rate is re- 
duced to 3% using multiple simulation'points, which is down 
from 17% using the long single simulation point. This is sig- 
nificantly lower than the average 80% error seen for blindly 
fast forwarding. The benefits can be most clearly seen in 
the programs bzip,  gcc, ammp, and ga lge l .  The reason that 
the long contiguous simulation points do not do much better 
is that they are constrained to only sample at one place in 
the program. For many programs this is sufficient, but  for 
those with interesting long term behavior, such as bzip,  it is 
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ammp 3265 24 109 026834 mm~v_update. 3026(13.8) 1774(31)  595(15.3) 1068(1.3) 2128(7.4) 

1607(12.6) 2437(4.9) 3112(11.5) 2480(2.2) 
applu 2238 3 2 1 8 0  018520 buts_ 624(22.1) 1625(22.5) 1956(18.8) 2234(6.6) 1380(15.5) 

1507(14.5) 
apsi 3479 3 3 4 0 9  03808c dctdxf_ 2107(5.6) 2863(14) 1007(70.7) 896(7.7) 1618(2) 
art- l l0 417 75 341 00fbb0 match 82(42.9) 255(41.2) 50(15.8) 
art-470 450 83 366 00f5d0 match 300(36.2) 46(14.7) 236(49.1) 
bzip2-graphic 1435 4 719 01285c spec_putc 168(11.7) 1042(3.7) 430(7.5) 762(16.2) 106(15.3) 

519(11.6) 872(8.2) 195(5.6) 148(2) 1435(18.2) 
bzip2-program 1249 4 459 00ddd0 sortIt 140(11) 468(12.3) 78(6.2) 990(16) 445(7.4) 

1005(7) 94(6.9) 606(14) 859(14.6) 341(4.7) 
bzip2-source 1088 4 978 00d774 qSort3 395(16) 511(4.3) 64(29.1) 488(7.3) 530(8.6) 

177(34.7) 
crafty 1918 462 775 021730 SwapXray 123(25) 510(19.7) 664(22.7) 1123(32.5) 
eon-rushmeier 578 140 404 04elb4 viewingHit 260(6.6) 238(23.7) 337(20.9) 435(35.6) 216(13.1) 
equake 1315 35 813 012410 phi0 874(12.2) 1292(36.7) 463(12.2) 336(24.1) 3(3.2) 

62(11.6) 
facerec 2682 356 376 02dlf4 graphroutinesAo. 1976(60.1) 1528(2.5)  1935(3.9) 1398(29.2) 348(4.3) 
fma3d 2683 192 2 5 4 2  0e3140 scatter_element. 112(7) 209(0.6) 842(68.4) 1600(11) 47(0.1) 

509(13) 
galgel 4093 3 2 4 9 2  02db00 syshtn_ 3511(5.5) 2081(11) 3466(11.2) 516(31.6) 2141(2.7) 

2181(29) 2161(3.3) 1017(5.5) 
gap 2695 639 675 050750 CollectGarb 1114(8.2) 1196(58.1) 88(12.7) 2189(14) 2609(7.1) 
gcc-166 469 61 390 0d157c gen_rtx 238(6.4) 149(42.2) 30(21.3) 404(30.1) 
gcc-200 1086 151 737 0ceb04 refers~o_regno. 8(45.8) 587(17.9) 921(10.9) 575(14.5) 1011(11) 
gcc-expr 120 27 37 191fd0 validate_change 63(12.5) 81(15.8) 42(16.7) 25(4.2) 9(45.8) 

88(5) 
gcc-integrate 131 14 5 1198e0 find_single_use. 118(9.2) 41(27.5) 102(21.4) 9(20.6) 57(3.8) 

73(17.6) 
gcc-scilab 620 139 208 100d54 insert 255(54.2) 39(9.5) 231(13.2) 379(15.8) 170(7.3) 
gzip-graphic 1037 158 654 009c00 fill_window 961(45.4) 87(28.5) 373(7.3) 1(0.1) 461(5.2) 

566(13.4) 
gzip-log 395 91 266 00d280 inflate_codes 207(24.1) 171(16.5) 157(16.7)  330(23.5) 71(19.2) 
gzip-program 1688 112 1 1 9 0  009660 longest_match 228(22.7) 779(21.4) 472(9.1) 1410(20.4) 594(26.4) 
gzip-random 821 152 624 00al4c deflate 484(0.9) 625(0.2) 5 8 0 ( 5 1 )  811(16.8) 200(30.9) 

1 (0 .1 )  
gzip-source 843 68 335 00a224 deflate 248(14.5) 327(13.2) 167(17.7) 656(27.8) 373(24.4) 

720(2.5) 
lucas 1423 11 546 021ef0 fit_square_ 982(21.4) 602(10.7) 1370(21.4)  458(28) 524(18.6) 
mcf 618 15 554 00911c price_outAmpl k 268(39.6) 425(11) 205(30.1) 468(4.5) 316(10.8) 

143(3.9) 
mesa 2816 6 1 1 3 6  0a30f0 generalAextured. 1846(35.3) 2806(0.7) 398(35.3) 977(28.8) 
mgrid 4191 21 3 2 9 3  0160f0 resid_ 43(24.2) 3459(22.8) 807(20.1) 3110(16.3) 2476(16.6) 
parser 5467 388 1 1 4 7  01edfc region_valid 3342(25.1) 1771(29.8) 5102(19.7) 2008(19.4) 4772(6) 
perlbmk-diff 399 56 142 07f974 regmatch 6(1) 355(62.7) 11(0.5) 397(0.8) 12(3.3) 

239(31.8) 
perlbmk-make 20 3 12 08268c  Perl~unops~t. 1(5) 20(20) 6(75) 
perlbmk-perf 290 69 6 08268c Perl~unops~t. 39(59.3) 207(40.7) 
perlbmk-split 1108 162 451 07fc98 regmatch 704(44.9) 596(9.1) 232(21.7) 461(21.8) 501(2.6) 
sixtrack 4709 250 3 0 4 4  167894 thin6d_ 6(1.7) 1719(98.3) 
swim 2258 3 2 0 8 0  019130 calcl_ 1951(29.8) 38(14) 777(24.7) 710(13.8) 2101(17.8) 
twolf 3464 7 1 0 6 7  041094 ucxxl 312(17) 2888(11.3) 3268(11.7) 961(20.4) 2054(39.5) 
vortex-one 1189 36 272 06289c  Mem_GetWord 536(17.1) 366(23.3) 115(8.2) 1068(17.2) 878(34.2) 
vortex-three 1330 177 565 033688 Part_Delete 934(25.4) 1129(11.4) 96(8.9) 47(11.1) 586(17.8) 

485(25.4) 
vortex-two 1386 206 1 0 2 5  05e6fc Mem_NewRegion 635(7.6) 752(24.5) 554(21.9) 930(7.4) 360(15.3) 

397(23.2) 
vp~place 1122 4 593 0224ec get.non_update. 166(25.5) 857(21.6) 1(0.2) 362(12.8) 1057(12) 

547(27.9) 
vpr-route 840 12 477 025c80 get_heap.head 559(29.9) 89(28) 353(23.8) 3(2.6) 490(15.7) 
wupwise 3496 11 3 2 3 8  01d680 zgemm_ 1811(43.3) 91(8) 3055(43.2) 1524(5.4) 

T a b l e  2: S ing le  s i m u l a t i o n  p o i n t s  for S P E C  2000  b e n c h m a r k s .  C o l u m n s  2 t h r o u g h  4 are  in t e r m s  o f  100 
m i l l i o n  i n s t r u c t i o n  e x e c u t e d .  T h e  l e n g t h  o f  full  e x e c u t i o n  is s h o w n ,  as we l l  as t h e  e n d  o f  i n i t i a l i z a t i o n .  S P  is 
t h e  s i n g l e  s i m u l a t i o n  p o i n t  u s i n g  t h e  a p p r o a c h  in th i s  paper .  T h e  p r o c e d u r e  in w h i c h  t h e  s i m u l a t i o n  p o i n t  
o c c u r r e d  and  its  P C  are a l so  s h o w n .  T h e  last  6 d ig i t s  o f  P C  o f  e a c h  S i m P o i n t  is g i v e n  in h e x ,  so  t h e  a d d r e s s  
is f o r m e d  f rom 1 2 0 x x x x x x .  P r o c e d u r e  n a m e s  t h a t  e n d  in "." w e r e  t r u n c a t e d  due  to  space .  T h e  rest  o f  t h e  
c o l u m n s  l ist  t h e  m u l t i p l e  s i m u l a t i o n  p o i n t s  f o u n d  in 100s  o f  m i l l i o n s .  T h e  first  n u m b e r  is t h e  s t a r t i n g  p lace  
o f  t h e  s i m u l a t i o n  p o i n t  r e l a t i v e  t o  t h e  s t a r t  of  e x e c u t i o n .  T h e  s e c o n d  n u m b e r  s h o w s  t h e  w e i g h t  g i v e n  t o  t h e  
c l u s t e r  t h a t  s i m u l a t i o n  p o i n t  was  t a k e n  from,  and  is used  w h e n  w e i g h i n g  t h e  f inal  re su l t s  o f  t h e  s i m u l a t i o n .  
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F i g u r e  10: M u l t i p l e  s i m u l a t i o n  p o i n t  r esu l t s .  S i m u l a t i o n  r e su l t s  a re  s h o w n  for u s i n g  a s ing le  s i m u l a t i o n  p o i n t  
s i m u l a t i n g  for 100 mi l l i on  i n s t r u c t i o n s ,  L o n g S P  chooses  a s ing le  s i m u l a t i o n  p o i n t  s i m u l a t i n g  for t h e  s a m e  
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e x e c u t i o n  of t h e  p r o g r a m .  

impossible to approximate the full behavior. 
Figure 11 is the average over all of the floating point pro- 

grams (top graph) and integer programs (bottom graph). Er- 
rors for IPC, branch miss rate, instruction and data cache 
miss rates, and the unified L2 cache miss rate for the archi- 
tecture presented in Section 2 are shown. The errors are with 
respect to these metrics for the full length of simulation us- 
ing SimpleScalar. Results are shown for starting simulation 
at the start of the program None, blindly fast forwarding a 
billion instructions FF-Billion, single simulation points of 
duration 1 (SimPoint) and k (LongSP), and multiple simula- 
tion points (Mult iple) .  

The first thing to note is that  using the just a single small 
simulation point performs quite well on average across all of 
the metrics when compared to blindly fast-forwarding. Even 
though a single SimPoint does well, it is clearly beaten by 
using the clustering based scheme presented in this paper 
across all of the metrics examined. One thing that stands out 
on the graphs is that  the error rate of the instruction cache 
and L2 cache appear to be high (especially for the integer 
programs) despite the fact that  our technique is doing quite 
well in terms of overall performance. This is due to the fact 
that  we present here an arithmetic mean of the errors, and 
there are several programs that  have high error rates due to 
the very small number of cache misses. If there are 10 misses 
in the whole program, and we estimate there to be 100, that  
will result in a error of 10X. We point to the overall IPC 
as the most important metric for evaluation as it implicitly 
weighs each of the metrics by it 's relative importance. 

6. R E L A T E D  W O R K  
Time Varying Behavior of Programs: In [18], we provided 

a first at tempt at showing the periodic patterns for all of 
the SPEC 95 programs, and how these vary over time for 
cache behavior, branch prediction, value prediction, address 
prediction, IPC and RUU occupancy. 

Training Inputs and Finding Smaller Representative In- 
puts: One approach for reducing the simulation time is to 
use the training or test inputs from the SPEC benchmark 
suite. For many of the benchmarks, these inputs are either 
(1) still too long to fully simulate, or (2) too short and place 
too much emphasis on the s tar tup and shutdown parts of 
the program's execution, or (3) inaccurately estimate behav- 
ior such as cache accesses do to decreased working set size. 

KleinOsowski et. al [12], have developed a technique where 
they manually reduce the input sets of programs. The input 
sets were developed using a range of approaches from trun- 
cating of the input files to modification of source code to 
reduce the number of times frequent loops were traversed. 
For these input sets they develop, they make sure that they 
have similar results in terms of IPC, cache, and instruction 
mix. 

Fast Forwarding and Check-pointing: Historically researchers 
have simulated from the start of the application, but this 
usually does not represent the majority of the program's be- 
havior because it is still in the initialization phase. Recently 
researchers have started to fast-forward to a given point in 
execution, and then start their simulation from there, ide- 
ally skipping over the initialization code to an area of code 
representative of the whole. During fast-forward the simula- 
tor simply needs to act as a functional simulator, and may 
take full advantage of optimizations like direct execution. Af- 
ter the fast-forward point has been reached, the simulator 
switches to full cycle level simulation. 

After fast-forwarding, the architecture state to be simu- 
lated is still cold, and a warmup time is needed in order to 
start  collecting representative results. Efficiently warming 
up execution only requires references immediately proceed- 
ing the start of simulation. Haskins and Skadron [7] exam- 
ined probabilistically determining the minimum set of fast- 
forward transactions that nmst be executed for warm up to 
accurately produce state as it would have appeared had the 
entire fast-forward interval been used for warm up [7]. They 
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floating point (top) and integer (bottom) b e n c h m a r k s  
un i f i ed  L2 cache  miss  r a t e s .  

recently examined using reuse analysis to determine how far 
before full simulation warmup needs to occur [8]. 

An alternative to fast forwarding is to use check-pointing 
to start the simulation of a program at a specific point. With 
check-pointing, code is executed to a given point in the pro- 
gram and the state is saved, or checkpointed, so that other 
simulation runs can start  there. In this way the initializa- 
tion section can be run just  one time, and there is no need 
to fast forward past it each time. The architectural state 
(e.g., caches, register file, branch prediction, etc) can either 
be stored in the trace (if they are not going to change across 
simulation runs) or can be warmed up in a manner similar 
to described above. 

Automatically Finding Where to Simulate: Our work is 
based upon the basic block distribution analysis in [19] as 
described in prior sections. Recent work on finding simula- 
tion points for data cache simulations is presented by Lafage 
and Seznec [13]. They proposed a technique to gather statis- 
tics over the complete execution of the program and use them 
to choose a representative slice of the program. They evalu- 
ate two metrics, one which captures memory spatial locality 
and one which captures memory temporal locality. They fur- 
ther propose to create specialized metrics such as instruction 
mix, control transfer, instruction characterization, and dis- 
tr ibution of data dependency distances to further quantify 
the behavior of the both the program's full execution and 
the execution of samples. 

Statistical Sampling: Several different techniques have been 
proposed for sampling to estimate the behavior of the pro- 
gram as a whole. These techniques take a number of contigu- 
ous execution samples, referred to as clusters in [4], across the 
whole execution of the program. These clusters are spread 
out throughout the execution of the program in an at tempt 
to provide a representative section of the application being 
simulated. Conte et. al [4] formed multiple simulation points 
by randomly picking intervals of execution, and then exam- 
ining how these fit to the overall execution of the program for 
several architecture metrics (IPC and branch and data cache 
statistics). Our work is complementary to this, where we 
provide a fast and metric independent approach for picking 
multiple simulation points based just on basic block vector 
similarity. When an architect gets a new binary to exam- 

ine they can use our approach to quickly find the simulation 
points, and then validate these with detailed simulation in 
parallel with using the binary. 

Statistical Simulation: Another technique to improve sim- 
ulation time is to use statistical simulation [16]. Using sta- 
tistical simulation, the application is run once and a syn- 
thetic trace is generated that  at tempts to capture the whole 
program behavior. The trace captures such characteristics 
as basic block size, typical register dependencies and cache 
misses. This trace is then run for sometimes as little as 50- 
100,000 cycles on a much faster simulator. Nussbaum and 
Smith [15] also examined generating synthetic traces and us- 
ing these for simulation and was proposed for fast design 
space exploration. We believe the techniques presented in 
this paper are complementary to the techniques of Oskin et 
al. and Nussbaum and Smith in that  more accurate profiles 
can be determined using our techniques, and instead of at- 
tempting to characterize the program as a whole it can be 
characterized on a per-phase basis. 

7. S U M M A R Y  
At the heart of computer architecture and program opti- 

mization is the need for understanding program behavior. As 
we have shown, many programs have wildly different behav- 
ior on even the very largest of scales (over the full lifetime of 
the program). While these changes in behavior are drastic, 
they are not without order, even in very complex applica- 
tions such as gcc. In order to help future compiler and ar- 
chitecture researchers in exploiting this large scale behavior, 
we have developed a set of analytical tools that  are capable 
of automatically and efficiently analyzing program behavior 
over large sections of execution. 

The development of the analysis is founded on a hardware 
independent metric, Basic Block Vectors, that  can concisely 
summarize the behavior of an arbitrary section of execution 
in a program. We showed that  by using Basic Block Vec- 
tors one can capture the behavior of programs as defined by 
several architectural metrics (such as IPC, and branch and 
cache miss rates). 

Using this framework, we examine the large scale behavior 
of several complex programs like gzip,  bzip,  and gcc, and 
find interesting patterns in their execution over time. The 
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behavior that  we find shows that  code and program behav- 
ior repeat over time. For example, in the input we exam- 
ined in detail for gcc we see that program behavior repeats 
itself every 23.6 billion instructions. Developing techniques 
that  automatically capture behavior on this scale is useful for 
architectural, system level, and runtime optimizations. We 
present an algorithm based on the identification of clusters 
of basic block vectors that  can find these repeating program 
behaviors and group them into sets for further analysis. For 
two of the programs gz ip  and gcc we show how the cluster- 
ing algorithm results line up nicely with the similarity matrix 
and correlate with the time varying IPC and data cache miss 
rates. 

It is increasingly common for computer architects and com- 
piler designers to use a small section of a benchmark to 
represent the whole program during the design and evalu- 
ation of a system. This leads to the problem of finding sec- 
tions of the program's execution that  will accurately repre- 
sent the behavior of the full program. We show how our 
clustering analysis can be used to automatically find multi- 
pie simulation points to reduce simulation time and to accu- 
rately model full program behavior. We call this clustering 
tool to find single and multiple simulation points SimPoint. 
SimPoint along with additional simulation point data  can 
be found at: h t t p : / / ~ ,  cs .  ucsd.  e d u / ' c a l d e r / s i m p o i n t / .  
For the SPEC 2000 programs, we found that  start ing simula- 
tion at the start  of the program results in an average error of 
210% when compared to the full simulation of the program, 
whereas blindly fast forwarding resulted in an average 80°A 
IPC error. Using a single simulation point found, using our 
basic block vector analysis, resulted in an average 17% IPC 
error. When using the clustering algorithm to create multiple 
simulation points we saw an average IPC error of 3%. 

Automatically identifying the phase behavior using clus- 
tering is beneficial for architecture, compiler, and operating 
system optimizations. To this end, we have used the notion'of 
basic block vectors and a random projection to create an ef- 
ficient technique for identifying phases on-the-fly [20], which 
can be efficiently implemented in hardware or software. Be- 
sides identifying phases, this approach can predict not only 
when a phase change is about to occur, but to which phase it 
is about to transition. We believe that  using phase informa- 
tion can lead to new compiler optimizations with code tai- 
lored to different phases of execution, multi-threaded archi- 
tecture scheduling, power management, and other resource 
distribution problems controlled by software, hardware or the 
operating system. 
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