
www.manaraa.com

Automatically Characterizing
Large Scale Program Behavior

Timothy Sherwood Erez Perelman Greg Hamerly

Department of Computer Science and Engineering
University of California, San Diego

{sherwood,eperelma,ghamerly, calder }@cs.ucsd .edu

Brad Calder

A b s t r a c t

Understanding program behavior is at the foundation of
computer architecture and program optimization. Many pro-
grams have wildly different behavior on even the very largest
of scales (over the complete execution of the program). This
realization has ramifications for many architectural and com-
piler techniques, from thread scheduling, to feedback directed
optimizations, to the way programs are simulated. However,
in order to take advantage of time-varying behavior, we .must
first develop the analytical tools necessary to automatically
and efficiently analyze program behavior over large sections
of execution.

Our goal is to develop automatic techniques that are ca-
pable of finding and exploiting the Large Scale Behavior of
programs (behavior seen over billions of instructions). The
first step towards this goal is the development of a hardware
independent metric that can concisely summarize the behav-
ior of an arbitrary section of execution in a program. To
this end we examine the use of Basic Block Vectors. We
quantify the effectiveness of Basic Block Vectors in capturing
program behavior across several different architectural met-
rics, explore the large scale behavior of several programs, and
develop a set of algorithms based on clustering capable of an-
alyzing this behavior. We then demonstrate an application of
this technology to automatically determine where to simulate
for a program to help guide computer architecture research.

1. INTRODUCTION
Programs can have wildly different behavior over their run

time, and these behaviors can be seen even on the largest of
scales. Understanding these large scale program behaviors
can unlock many new optimizations. These range from new
thread scheduling algorithms that make use of information on
when a thread's behavior changes, to feedback directed op-
timizations targeted at not only the aggregate performance
of the code but individual phases of execution, to creating
simulations that accurately model full program behavior. To
enable these optimizations, we must first develop the analyt-
ical tools necessary to automatically and efficiently analyze

Permission to make digital or hard copies of all or part of this work for
personal or c lassroom use is granted without fee provided that copies are
not made or distributed for profit or commercia l advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOSX, 10/02, San Jose, CA, USA.
Copyright 2002 ACM 1-58113-574-2/02/0010 ...$5.00.

program behavior over large sections of execution.
In order to perform such an analysis we need to develop a

hardware independent metric that can concisely summarize
the behavior of an arbitrary section of execution in a pro-
gram. In [19], we presented the use of Basic Block Vectors
(BBV), which uses the structure of the program that is ex-
ercised during execution to determine where to simulate. A
BBV represents the code blocks executed during a given in-
terval of execution. Our goal was to find a single continuous
window of executed instructions that match the whole pro-
gram's execution, so that this smaller window of execution
can be used for simulation instead of executing the program
to completion. Using the BBVs provided us with a hardware
independent way of finding this small representative window.

In this paper we examine the use of BBVs for analyzing
large scale program behavior. We use BBVs to explore the
large scale behavior of several programs and discover the
ways in which common patterns, and code, repeat themselves
over the course of execution. We quantify the effectiveness of
basic block vectors in capturing this program behavior across
several different architectural metrics (such as IPC, branch,
and cache miss rates).

In addition to this, there is a need for a way of classifying
these repeating patterns so that this information can be used
for optimization. We show that this problem of classifying
sections of execution is related to the problem of cluster-
ing from machine learning, and we develop an algorithm to
quickly and effectively find these sections based on clustering.
Our techniques automatically break the full execution of the
program up into several sets, where the elements of each set
are very similar. Once this classification is completed, anal-
ysis and optimization can be performed on a per-set basis.

We demonstrate an application of this cluster-based be-
havior analysis to simulation methodology for computer ar-
chitecture research. By making use of clustering information
we are able to accurately capture the behavior of a whole
program by taking simulation results from representatives of
each cluster and weighing them appropriately. This results
in finding a set of simulation points that when combined ac-
curately represents the target application and input, which
in turn allows the behavior of even very complicated pro-
grams such as gcc to be captured with a small amount of
simulation time. We provide simulation points (points in the
program to start execution at) for Alpha binaries of a l l of the
SpEC 2000 programs. In addition, we validate these simula-
tion points with the IPC, branch, and cache miss rates found
for complete execution of the SPEC 2000 programs.

The rest of the paper is laid out as follows. First, a sum-
mary of the methodology used in this research is described

45

www.manaraa.com

in Section 2. Section 3 presents a brief review of basic block
vectors and an in depth look into the proposed techniques
and algorithms for identifying large scale program behaviors,
and an analysis of their use on several programs. Section 4
describes how clustering can be used to analyze program be-
havior, and describes the clustering methods used in detail.
Section 5 examines the use of the techniques presented in
Sections 3 and 4 on an example problem: finding where to
simulate in a program to achieve results representative of full
program behavior. Related work is discussed in Section 6,
and the techniques presented are summarized in Section 7.

2. METHODOLOGY
In this paper we used both ATOM [21] and SimpleScalar

3.0c [3] to perform our analysis and gather our results for
the Alpha AXP ISA. ATOM is used to quickly gather pro-
filing information about the code executed for a program.
SimpleScalar is used to validate the phase behavior we found
when clustering our basic block profiles showing that this
corresponds to the phase behavior in the programs perfor-
mance and architecture metrics. The baseline microarchitec-
ture model we simulated is detailed in Table 1. We simulate
an aggressive 8-way dynamically scheduled microprocessor
with a two level cache design. Simulation is execution-driven,
including execution down any speculative path until the de-
tection of a fault, TLB miss, or branch mis-prediction.

We analyze and simulated all of the SPEC 2000 bench-
marks compiled for the Alpha ISA. The binaries we used
in this study and how they were compiled can be found at:
http ://~. s±mplescalar, tom/.

3. USING BASIC BLOCK VECTORS
A basic block is a section of code that is executed from

start to finish with one entry and one exit. We use the fre-
quencies with which basic blocks are executed as the metric
to compare different sections of the application's execution
to one another. The intuition behind this is that the be-
havior of the program at a given t ime is directly related to
the code it is executing during that interval, and basic block
distributions provide us with this information.

A program, when run for any interval of time, will execute
each basic block a certain number of times. Knowing this
information provides us with a fingerprint for that interval
of execution, and tells us where in the code the application
is spending its time. The basic idea is that knowing the ba-
sic block distribution for two different intervals gives us two
separate fingerprints which we can then compare to find out
how similar the intervals are to one another. If the finger-
prints are similar, then the two intervals spend about the
same amount of time in the same code, and the performance
of those two intervals should be similar.

3.1 Basic Block Vector
A Basic Block Vector (BBV) is a single dimensional array,

where there is a single element in the array for each static
basic block in the program. For the results in this paper, the
basic block vectors are collected in intervals of 100 million
instructions throughout the execution of a program. At the
end of each interval, the number of times each basic block is
entered during the interval is recorded and a 'new count for
each basic block begins for the next interval of 100 million in-
structions. Therefore, each element in the array is the count
of how many times the corresponding basic block has been
entered during an interval of execution, multiplied by the

number of instructions in that basic block. By multiplying
in the number of instructions in each basic block we insure
that we weigh instructions the same regardless of whether
they reside in a large or small basic block. We say that a Ba-
sic Block Vector which was gathered by counting basic block
executions over an interval of N x 100 million instructions,
is a Basic Block Vector of duration N.

Because we are not interested in the actual count of basic
block executions for a given interval, but rather the propor-
tions between t ime spent in basic blocks, a BBV is normal-
ized by having each element divided by the sum of all the
elements in the vector.

3.2 Basic Block Vector Difference
In order to find patterns in the program we must first have

some way of comparing two Basic Block Vectors. The oper-
ation we desire takes as input two Basic Block Vectors, and
outputs a single number which tells us how close they are to
each other. There are several ways of comparing two vectors
to one another, such as taking the dot product or finding
the Euclidean or Manhat tan distance. In this paper we use
both the Euclidean and Manhattan distances for comparing
vectors.

The Euclidean distance can be found by treatJing each vec-
tor as a single point in D-dimensional space. The distance
between two points is simply the square root of the sum of
squares just as in c ~ = a2+b 2. The formula for computing the
Euclidean distance of two vectors a and b in D-dimensional
space is given by:

Euc l ideanDis t (a , b) = (a~ - b~) 2
i = l

The Manhat tan distance on the other hand is the distance
between two points if the only paths you can take are parallel
to the axes. In two dimensions this is analogous to the dis-
tance traveled if you were to go by car through, city blocks.
This has the advantage that it weighs more heavily differ-
ences in each dimension (being closer in the x-dimension does
not get you any closer in the y-dimension). The Manhat tan
distance is computed by summing the absolute value of the
element-wise subtraction of two vectors. For vectors a and b
in D-dimensional space, the distance can be computed as:

D

M a n h a t t a n D i s t (a , b) = E lai - blJ
i = l

Because we have normalized all of the vectors, the Manhat-
tan distance will always be a single number between 0 and 2
(because we normalize each BBV to sum to 1). This number
can then be used to compare how closely related two intervals
of execution are to one another. For the rest of this section
we will be discussing distances in terms of Manhat tan dis-
tance, because we found that it more accurately' represented
differences in our high-dimensional data. We present the Eu-
clidean distance as it pertains to the clustering algorithms
presented in Section 4, since it provides a more accurate rep-
resentation for data with lower dimensions.

3.3 Basic Block Similarity Matrix
Now that we have a method of comparing intervals of pro-

gram execution to one another, we can now concentrate on
finding phase-based behavior. A phase of program behav-
ior can be defined in several ways. Past definitions are built
around the idea of a phase being a contiguous interval of exe-

45

www.manaraa.com

Instruction Cache 8k 2-way set-associative, 32 byte blocks, 1 cycle latency
Data Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency
Unified L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle latency
Memory 150 cycle round trip access
Branch Predictor hybrid - 8-bit gshare w/8k 2-bit predictors --I- a 8k bimodal predictor
Out-of-Order Issue
Mechanism
Architecture Registers
Functional Units

out-of-order issue of up to 8 operations per cycle, 128 entry re-order buffer
load/store queue, loads may execute when all prior store addresses are known
32 integer, 32 floating point
8-integer ALU, 4-load/store units, 2-FP adders, 2-integer MULT/DIV', 2-FP MULT/DIV

Virtual Memory 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions complete

T a b l e 1: B a s e l i n e S i m u l a t i o n Mode l .

cution during which a measured program metric is relatively
stable. We extend this notion of a phase to include all similar
sections of execution regardless of temporal adjacency.

A key observation from this paper is that the phase be-
havior seen in any program metric is directly a function of
the code being executed. Because of this we can use the
comparison between the Basic Block Vectors as an approxi-
mate bound on how closely related any other metrics will be
between those two intervals.

To find how intervals of execution relate to one another we
create a Basic Block Similarity Matrix. The similarity matrix
is an upper triangular N × N matrix, where N is the number
of intervals in the program's execution. An entry at (x, y) in
the matrix represents the Manhat tan distance between the
basic block vector at interval x and the basic block vector at
interval y.

Figures l(left and right) and 4(left) shows the similarity
matrices for gzip, bzip, and gcc using the Manhat tan dis-
tance. The diagonal of the matrix represents the program's
execution over time from start to completion. The darker
the points, the more similar the intervals are (the Manhat-
tan distance is closer to 0), and the lighter they are the more
different they are (the Manhat tan distance is closer to 2).

The top left corner of each graph is the start of program
execution and is the origin of the graph, (0, 0), and the bot-
tom right of the graph is the point (N - 1, N - 1) where N
is the number of intervals that the full program execution
was divided up into. The way to interpret the graph is to
start considering points along the diagonal axis drawn. Each
point is perfectly similar to itself, so the points directly on
the axis all are drawn dark. Starting from a given point on
the diagonal axis of the graph, you can begin to compare how
that point relates to it 's neighbors forward and backward in
execution by tracing horizontally or vertically. If you wish
to compare a given interval x with the interval at x + n,
you simply start at the point (x, x) on the graph and trace
horizontally to the right until you reach (x, x -t- n).

To examine the phase behavior of programs, let us first
examine gzip because it has behavior on such a large scale
that it is easy to see. If we examine an interval taken from 70
billion instructions into execution, in Figure 1 (left), this is
directly in the middle of a large phase shown by the triangle
block of dark color that surrounds this point. This means
that this interval is very similar to it 's neighbors both forward
and backward in time. We can also see that the execution at
50 billion and 90 billion instructions is also very similar to the
program behavior at 70 billion. We also note, while it may
be hard to see in a printed version that the phase interval at
70 billion instructions is similar to the phases at interval 10
and 30 billion, but they are not as similar as to those around
50 and 90 billion. Compare this with the IPC and data cache
miss rates for gzip shown in Figure 2. Overall, Figure l(left)
shows that the phase behavior seen in thesimilar i ty matrix
lines up quite closely with the behavior of the program, with

5 large phases (the first 2 being different from the last 3) each
divided by a small phase, where all of the small phases are
very similar to each other.

The similarity matrix for b2ip (shown on the right of Fig-
ure 1) is very interesting. Bzip has complicated behavior,
with two large parts to it 's execution, compression and de-
compression. This can readily be seen in the figure as the
large dark triangular and square patches. The interesting
thing about bz ip is that even within each of these sections of
execution there is complex behavior. This, as will be shown
later, makes the behavior of bz ip impossible to capture using
a small contiguous section of execution.

A more complex case for finding phase behavior is gcc,
which is shown on the left of Figure 4. This similarity ma-
trix shows the results for gcc using the Manhat tan distance.
The similarity matrix on the right will be explained in more
detail in Section 4.2.1. This figure shows that gcc does have
some regular behavior. It shows that, even here, there is com-
mon code shared between sections of execution, such as the
intervals around 13 billion and 36 billion. In fact the strong
dark diagonal line cutting through the matrix indicates that
there is good amount of repetition between offset segments of
execution. By analyzing the graph we can see that interval
x is very similar to interval (x + 23.6B) for all x.

Figures 2 and 5 show the time varying behavior of gzip
and gcc. The average IPC and data cache miss rate is shown
for each 100 million interval of execution over the complete
execution of the program. The time varying results graphi-
cally show the same phase behavior seen by looking at only
the code executed. For example, the two phases for gcc at 13
billion and 36 billion, shown to be very similar in Figure 4,
are shown to have the same IPC and data cache miss rate in
Figure 5.

4. CLUSTERING
The basic block vectors provide a compact and represen-

tative summary of the program's behavior for intervals of
execution. By examining the similarity between them, it is
clear that there exists a high level pattern to each program's
execution. In order to make use of this behavior we need
to start by delineating a method of finding and represent-
ing the information. Because there are so many intervals of
execution that are similar to one another, one efficient repre-
sentation is to group the intervals together that have similar
behavior. This problem is analogous to a clustering problem.
Later, in Section 5, we demonstrate how we use the clusters
we discover to find multiple simulation points for irregular
programs or inputs like gcc. By simulating only a single rep-
resentative from each cluster, we can accurately represent the
whole program's execution.

4.1 Clustering Overview
The goal of clustering is to divide a set of points into groups

47

www.manaraa.com

F i g u r e 1: B a s i c b l o c k s i m i l a r i t y m a t r i x for t h e p r o g r a m s gzip-graphic (s h o w n le f t) a n d bzip-grap.hic (s h o w n
r i g h t) . T h e d i a g o n a l o f t h e m a t r i x r e p r e s e n t s t h e p r o g r a m ' s e x e c u t i o n t o c o m p l e t i o n w i t h u n i t s in b i l l i o n s o f
i n s t r u c t i o n s . T h e d a r k e r t h e p o i n t s , t h e m o r e s i m i l a r t h e i n t e r v a l s a r e (t h e M a n h a t t a n d i s t a n c e is c lose r t o
0) , a n d t h e l i g h t e r t h e p o i n t s t h e m o r e d i f f e r e n t t h e y a r e (t h e M a n h a t t a n d i s t a n c e is c l o s e r t o 2).

x100%

" - 6 0 % ~ o ~ i : ; I ~ : ,.
' ~ 4 0 % - ~ , ' ~ ~ ~ ; , : :

,~ . : ~ ~ , , ~.., - ,

a . 0 % i , , , l

c ~ 5

~ 2
1

" '" '" Igl Igl I I IHD Hi

I I I I l : : : : : I i l l | l l l i l
l | i l l i l l i i

I i I I i I l I I I
i i l l l l l l i I

I I I
I

I I I I I

0 B 2 0 B 40B 60B 80B 1 0 0 B
I n s t r u c t i o n s E x e c u t e d (i n B i l l i o n s)

F i g u r e 2: (t o p g r a p h) T i m e v a r y i n g g r a p h for g z i p - g r a p h i c . T h e a v e r a g e I P C (d r a w n w i t h so l id l ine) a n d
L1 d a t a c a c h e mi s s r a t e (d r a w n w i t h d o t t e d l ine) a r e p l o t t e d for e v e r y i n t e r v a l (100 m i l l i o n i n s t r u c t i o n s o f
e x e c u t i o n) s h o w i n g h o w t h e s e m e t r i c s v a r y o v e r t h e p r o g r a m ' s e x e c u t i o n . T h e x - a x i s r e p r e s e n t s t h e e x e c u t i o n
o f t h e p r o g r a m o v e r t i m e , a n d t h e y - a x i s t h e p e r c e n t o f m a x v a l u e t h e m e t r i c h a d d u r i n g e x e c u t i o n . T h e
r e s u l t s a r e n o n - a c c u m u l a t i v e .

F i g u r e 3: (b o t t o m g r a p h) C l u s t e r g r a p h for g z i p - g r a p h i c . T h e ful l r u n o f t h e e x e c u t i o n is p a r t i t i o n e d i n t o a
se t o f 6 c l u s t e r s . T h e x - a x i s is in i n s t r u c t i o n s e x e c u t e d , a n d t h e g r a p h s h o w s for e a c h i n t e r v a l o:f e x e c u t i o n
(e v e r y 100 m i l l i o n i n s t r u c t i o n s) , w h i c h c l u s t e r t h e i n t e r v a l was p l a c e d in to .

48

www.manaraa.com

i W ~iiii iiii ̧̧ i

I liL]
-

I

i

F i g u r e 4: T h e o r i g i n a l b a s i c b l o c k s i m i l a r i t y m a t r i x for t h e p r o g r a m gcc (s h o w n le f t) , a n d t h e s i m i l a r i t y m a t r i x
for gcc-166 d r a w n f r o m p r o j e c t e d d a t a (on r i g h t) . T h e f igu re o n t h e lef t u se t h e o r i g i n a l b a s i c b l o c k v e c t o r s
(each o f w h i c h has ove r 100,000 d i m e n s i o n s) a n d uses t h e M a n h a t t a n d i s t a n c e as a m e t h o d o f d i f f e r e n c e
t a k i n g . T h e f i gu re on t h e r i g h t u ses p r o j e c t e d d a t a (d o w n t o 15 d i m e n s i o n s) a n d uses t h e E u c l i d e a n d i s t a n c e
for d i f f e r e n c e t a k i n g .

x 1 0 0 % -

8 0 % j.

'~ 6 0 %

• 4 0 % 2

2 0 % -"
a. 0 % "

m

. - : - : - - , - - . - - ; . , , . - , . , " : ' : - ; . - . . - . - - : . ~ . ."-.-'~, , ,

4

~ 3

~ 2 2
o 1

I I
1 I I I

• I l I n
• • i I n

i i I |
i I i i
° , , , , , , , i , , , , , , , , 1 , , ° , , , , , , | , , , , ,

0 10 20 30
, , , i , , , , , ,

4O
Inst ruct ions Executed (in Bi l l ions)

F i g u r e 5: (t o p g r a p h) T i m e v a r y i n g g r a p h for gcc-166. T h e a v e r a g e I P C (d r a w n w i t h so l id l ine) a n d L1 d a t a
c a c h e m i s s r a t e (d r a w n w i t h d o t t e d l ine) a r e p l o t t e d for e v e r y i n t e r v a l (100 m i l l i o n i n s t r u c t i o n s o f e x e c u t i o n)
s h o w i n g h o w t h e s e m e t r i c s v a r y o v e r t h e p r o g r a m ' s e x e c u t i o n . T h e x - a x i s r e p r e s e n t s t h e e x e c u t i o n o f t h e
p r o g r a m o v e r t i m e , a n d t h e y - a x i s t h e p e r c e n t o f m a x v a l u e t h e m e t r i c h a d d u r i n g e x e c u t i o n . T h e r e s u l t s a r e
n o n - a c c u m u l a t i v e .

F i g u r e 6: (b o t t o m g r a p h) C l u s t e r g r a p h for gcc-166. T h e full r u n o f t h e e x e c u t i o n is p a r t i t i o n e d i n to a se t o f
4 c l u s t e r s . T h e x - a x i s is in i n s t r u c t i o n s e x e c u t e d , a n d t h e g r a p h s h o w s for e a c h i n t e r v a l o f e x e c u t i o n (e v e r y
100 m i l l i o n i n s t r u c t i o n s) , w h i c h c l u s t e r t h e i n t e r v a l was p l a c e d in to .

49

www.manaraa.com

such that points within each group are similar to one an-
other (by some metric, often distance), and points in different
groups are different from one another. This problem arises in
other fields such as computer vision [10], document classifica-
tion [22], and genomics [1], and as such it is an area of much
active research. There are many clustering algorithms and
many approaches to clustering. Classically, the two primary
clustering approaches are Parti t ioning and Hierarchical:

Partitioning algorithms choose an initial solution and then
use iterative updates to find a better solution. Popular al-
gorithms such as k-means [14] and Gaussian Expectation-
Maximization [2, pages 59-73] are in this family. These al-
gorithms tend to have run time that is linear in the size of
the dataset.

Hierarchical algorithms [9] either combine together sim-
ilar points (called agglomerative clustering, and conceptu-
ally similar to Huffman encoding), or recursively divides the
dataset into more groups (called divisive clustering). These
algorithms tend to have run time that is quadratic in the size
of the dataset.

4.2 Phase Finding Algorithm
For our algorithm, we use random linear projection fol-

lowed by k-means. We choose to use the k-means clustering
algorithm, since it is a very fast and simple algorithm that
yields good results. To choose the value of k, we use the
Bayesian Information Criterion (BIC) score [11, 17]. The
following steps summarize our algorithm, and then several of
the steps are explained in more detail:

1. Profile the basic blocks executed in each program to
generate the basic block vectors for every 100 million
instructions of execution.

2. Reduce the dimension of the BBV data to 15 dimen-
sions using random linear projection.

3. Try the k-means clustering algorithm on the
low-dimensional data for k values 1 to 10. Each run of
k-means produces a clustering, which is a partit ion of
the data into k different clusters.

4. For each clustering (k ---- 1 . . . 10), score the fit of the
clustering using the BIC. Choose the clustering with
the smallest k, such that it 's score is at least 90% as
good as the best score.

4.2.1 Random Projection
For this clustering problem, we have to address the prob-

lem of dimensionality. All clustering algorithms suffer from
the so-called "curse of dimensionality", which refers to the
fact that it becomes extremely hard to cluster data as the
number of dimensions increases. For the basic block vectors,
the number of dimensions is the number of executed basic
blocks in the program, which ranges from 2,756 to 102,038
for our experimental data, and could grow into the millions
for very large programs. Another practical problem is that
the running time of our clustering algorithm depends on the
dimension of the data, making it slow if the dimension grows
too large.

Two ways of reducing the dimension of data are dimension
selection and dimension reduction. Dimension selection sim-
ply removes all but a small number of the dimensions of the
data, based on a measure of goodness of each dimension for
describing the data. However, this throws away a lot of data
in the dimensions which are ignored. Dimension reduction

reduces the number of dimensions by creating a new lower-
dimensional space and then projecting each data point into
the new space (where the new space's dimensions are not
directly related to the old space's dimensions). This is anal-
ogous to taking a picture of 3 dimensional data at a random
angle and projecting it onto a screen of 2 dimensions.

For this work we choose to use random linear projection [5]
to create a new low-dimensional space into which we pro jeSt
the data. This is a simple and fast technique that is very ef-
fective at reducing the number of dimensions while retaining
the properties of the data. There are two steps to reducing
a dataset X (which is a matrix of basic block vectors and is
of size Ni~t Is x Dn~,mbb, where D,~mbb is the number of
basic blocks in the pr9gram) down to D n ~ dimensions using
random linear projection:

• Create a Dn~mbb X Dn~, projection matrix M by choos-
ing a random value for each matrix entry between -1
and 1.

• Multiply X times M to obtain the new lower-dimensional
dataset X ' which wil'l be of size Nint l~ x Dne~,.

For clustering programs, we found that using D n ~ =
15 dimensions is sufficient to still differentiate the different
phases of execution. Figure 7 shows why we chose to project
the data down to 15 dimensions. The graph shows the num-
ber of dimensions on the x-axis. The y-axis represents the k
value found to be best on average, when the programs were
projected down to the number of dimensions indicated by the
x-axis. The best k is determined by the k with the highest
BIC score, which is discussed in Section 4.2.3. The y-axis is
shown as a percent of the maximum k seen for each program
so that the curve can be examined independent; of the actual
number of clusters found for each program. The results show
that for 15 dimensions the number of clusters found begins
to stabilize and only climbs slightly. Similar results were also
found using a different method of finding k in [6].

The advantages of using linear projections are twofold.
First, creating new vectors with a low dimension of 15 is
extremely fast and can even be done at simulation time. Sec-
ondly, using only 15 dimensions speeds up the k-means al-
gorithm significantly, and reduces the memory requirements
by several orders of magnitude over using the original basic
block vectors.

Figure 4 shows the similarity matrix for gcc on the left
using original BBVs, whereas the similarity matrix on the
right shows the same matrix but on the data that has been
projected down to 15 dimensions. For the reduced dimension
data we use the Euclidean distance to measure differences,
rather than the Manhat tan distance used on the full data.
After the projection, some information will be blurred, but
overall the phases of execution that are very similar with full
dimensions can still be seen to have a strong similarity with
only 15 dimensions.

4.2.2 K-means
The k-means algorithm is an iterative optimization algo-

rithm, which executes as two phases, which eu:e repeated to
convergence. The algorithm begins with a random assign-
ment of k different centers, and begins its iterative process.
The iterations are required because of the recursive nature
of the algorithm; the cluster centers define the cluster mem-
bership for each data point, but the data point memberships
define the cluster centers. Each point in the data belongs to,
and can be considered a member of, a single duster.

50

www.manaraa.com

100% -

80%

X

60%

8 40%
m,=
O el

20%

0% I I I I I

0 10 20 30 40 50

Number of Dimensions

F i g u r e 7: M o t i v a t i o n for r a n d o m p r o j e c t i o n d o w n
to 15 d i m e n s i o n s (D----15). T h e x - a x i s is t h e n u m -
b e r of d i m e n s i o n s of t h e p r o j e c t i o n , and t h e y - a x i s is
t h e p e r c e n t o f t h e m a x n u m b e r o f c l u s t e r s f o u n d for
each p r o g r a m a v e r a g e d over all spec p r o g r a m s . T h e
resu l t s s h o w t h a t as y o u d e c r e a s e t h e n u m b e r o f di-
m e n s i o n s t o o far (t h e l owes t p o i n t is two d i m e n s i o n s)
t h e t r u e c lus t er s b e c o m e co l l apsed on o n e a n o t h e r ,
an d t h e a l g o r i t h m c a n n o t f ind as m a n y c lus ters . B y
D = 1 5 m o s t of th i s effect has gone .

We initialize the k cluster centers by choosing k random
points from the data to be clustered. After initialization, the
k-means algorithm proceeds in two phases which are repeated
until convergence:

• For each data point being clustered, compare its dis-
tance to each of the k cluster centers and assign it to
(make it a member of) the cluster to which it is the
closest.

• For each cluster center, change its position to the cen-
troid of all of the points in its cluster (from the mem-
berships just computed). The centroid is computed as
the average of all the data points in the cluster.

This process is iterated until membership (and hence clus-
ter centers) cease to change between iterations. At this point
the algorithm terminates, and the output is a set of final clus-
ter centers and a mapping of each point to the cluster that
it belongs to. Since we have projected the data down to 15
dimensions, we can quickly generate the clusters for k-means
with k from 1 to 10. In doing this, there are efficient algo-
rithms for comparing the clusters that are formed for these
different values of k, and choosing one that is good but still
uses a small value for k is the next problem.

4.2.3 Bayesian Information Criterion
To compare ancl evaluate the different clusters formed for

different k, we use the Bayesian Information Criterion (BIC)
as a measure of the "goodness of fit" of a clustering to a
dataset. More formally, the BIC is an approximation to the
probability of the clustering given the data that has been
clustered. Thus, the larger the BIC score, the higher the
probability that the clustering being scored is a "good fit" to
the data being clustered. We use the BIC formulation given
in I171 for clustering with k-means, however other formula-
tions of the BIC could also be used.

More formally, the BIG score is a penalized likelihood.
There are two terms in the BIG: the likelihood and the penalty.
The likelihood is a measure of how well the clustering models
the data. To get the likelihood, each cluster is considered to
be produced by a spherical Gaussian distribution, and the
likelihood of the data in a cluster is the product of the prob-
abilities of each point in the cluster given by the Gaussian.
The likelihood for the whole dataset is just the product of the
likelihoods for all clusters. However, the likelihood tends to
increase without bound as more clusters are added. There-
fore the second term is a penalty that offsets the likelihood
growth based on the number of clusters. The BIG is formu-
lated as

BIG(D, k) = l(D]k) - ~ log(R)

where l(DIk) is the likelihood, R is the number of points in
the data, and pj is the number of parameters to estimate,
which is (k - 1) + dk + 1 for (k - 1) cluster probabilities,
k cluster center estimates which each require d dimensions,
and 1 variance estimate. To compute l(Dik) we use

k

l(D[k) = Z - - ~ log(21r)- ~ log(a 2) Ri2- 1
i = l

+R/log(P~i/R)

where Ri is the number of points in the i th cluster, and a 2
is the average variance of the Euclidean distance from each
point to its cluster center.

For a given program and inputs, the BIC score is calculated
for each k-means clustering, for k from 1 to N. We then choose
the clustering that achieves a BIG score that is at least 90%
of the spread between the largest and smallest BIG score
that the algorithm has seen. Figure 8 shows the benefit of
choosing a BIG with a high value and its relationship with the
variance in IPC seen for that cluster. The y-axis shows the
percent of IPC variance seen for a given clustering, and the
corresponding BIC score the clustering received. Each point
on the graph represents the average or max IPC variance for
all points in the range of =t:5% of the BIG score shown. The
results show that picking clusterings that represent greater
than 80% of the BIG score resulted in an IPC variance of less
than 20% on average. The IPC variance was computed as the
weighted sum of the IPC variance for each cluster, where the
weight for a cluster is the number of points in that cluster.
The IPC variance for each cluster is simply the variance of
the IPC for all the points in that cluster.

4.3 Clusters and Phase Behavior
Figures 3 and 6 show the 6 clusters formed for gzip and

the 4 clusters formed for gcc. The X-axis corresponds to
the execution of the program in billions of instructions, and
each interval (each of 100 million instructions) is tagged to
be in one of the N clusters (labeled on the Y-axis). These
figures, just as for Figures 1 and 4, show the execution of the
programs to completion.

For gzip, the full run of the execution is partitioned into
a set of 6 clusters. Looking to Figure l(left) for comparison,
we see that the cluster behavior captured by our tool lines up
quite closely with the behavior of the program. The majority
of the points are contained by clusters 1,2,3 and 6. Clusters
1 and 2 represent the large sections of execution which are
similar to one another. Clusters 3 and 6 capture the smaller
phases which lie in between these large phases, while cluster
5 contains a small subset of the larger phases, and cluster 4
represents the initialization phase.

51

www.manaraa.com

2.5-

2.0-

8 = 1.5

"i
1.0

0.5-:
.

0.0 !
0%

• average

• • ---~-- max

II

' • .e

• / " . . . f - •

I • I I I
20% 40% 60% 80% 100%

Percent BIC

F i g u r e 8: P l o t of ave r age I P C v a r i a n c e a n d m a x I P C
v a r i a n c e ve r sus t h e B I C . T h e s e resu l t s i n d i c a t e t h a t
for o u r da t a , a c l u s t e r i n g f o u n d to have a B I C score
grea ter t h a n 80% will have , on average , a n d I P C var i -
a n c e of less t h a n 0.2.

In the cluster graph for gcc, shown in Figure 6, the run
is now partitioned into 4 different clusters. Looking to Fig-
ure 4 for comparison, we see that even the more complicated
behavior of gcc is captured correctly by our tool. Clusters
2 and 4 correspond to the dark boxes shown parallel to the
diagonal axis. It should also be noted that the projection
does introduce some degree of error into the clustering. For
example, the first group of points in cluster 2 are not really
that similar to the other points in the cluster. Comparing
the two similarity matrices in Figure 4, shows the introduc-
tion of a dark band at (0,30) on the graph which was not in
the original (un-projected) data. Despite these small errors,
the clustering is still very good, and the impact of any such
errors will be minimized in the next section.

5. FINDING SIMULATION POINTS
Modern computer architecture research relies heavily on

cycle accurate simulation to help evaluate new architectural
features. While the performance of processors continues to
grow exponentially, the amount of complexity within a pro-
cessor continues to grow at an even a faster rate. With each
generation of processor more transistors are added, and more
things are done in parallel on chip in a given cycle while at
the same time cycle times continue to decrease. This grow-
ing gap between speed and complexity means that the time
to simulate a constant amount of processor time is growing.
It is already to the point that executing programs fully to
completion in a detailed simulator is no longer feasible for
architectural studies. Since detailed simulation takes a great
deal of processing power, only a small subset of a whole pro-
gram can be simulated.

SimpleScalar [3], one of the faster cycle-level simulators,
can simulate around 400 million instructions per hour. Un-
fortunately many of the new SPEC 2000 programs execute
for 300 billion instructions or more. At 400 million instruc-
tions per hour this will take approximately 1 month of CPU
time.

Because it is only feasible to execute a small portion of
the program, it is very important that the section simulated
is an accurate representation of the program's behavior as a

whole. The basic block vector and cluster analysis presented
in Sections 3 and 4 will allow us to make sure that this is the
c a s e .

5.1 Single Simulation Points
In [19], we used basic block vectors to automatically find a

single simulation point to potentially represent the complete
execution of a program. A Simulation Point is a starting
simulation place (in number of instructions executed from the
start of execution) in a program's execution derived from our
analysis. That algorithm creates a target basic block vector,
which is a BBV that represents the complete execution of
the program. The Manhat tan distance between each interval
BBV and the target BBV is computed. The BBV with the
lowest Manhat tan distance represents the single simulation
point that executes the code closest to the complete execution
of the program. This approach is used to calculate the long
single simulation points (LongSP) described below.

In comparison, the single simulation point results in this
paper are calculated by choosing the BBV that has the small-
est Euclidean distance from the centroid of the whole dataset
in the 15-dimensional space, a method which we find supe-
rior to the original method. The 15-dimensional centroid is
formed by taking the average of each dimension over all in-
tervals in the cluster.

Figure 9 shows the IPC estimated by executing only a
single interval, all 100 million instructions long but chosen
by different methods, for all SPEC 2000 programs. This
is shown in comparison to the IPC found by executing the
program to completion. The results are from SimpleScalar
using the architecture model described in Section 2, and all
fast forwarding is done so that all of the architecture struc-
tures are completely warmed up when starting simulation (no
cold-start effect).

The first bar, labeled none, is the IPC found when exe-
cuting only the first 100 million instructions t~-om the start
of execution (without any fast forwarding). The second bar,
FF-Billion shows the results after blindly fast forwarding 1
billion instructions before start ing simulation. The third bar,
SimPoint shows the IPC using our single sinmlation point
analysis described above, and the last bar shows the IPC of
simulating the program to completion (labeled Ful l) . Be-
cause these are actual IPC values, values which are closer to
the F u l l bar are better.

The results in Figure 9 shows that the single simulation
points are very close to the actual full execution of the pro-
gram, especially when compared against the ad-hoc tech-
niques. Starting simulation at the start of the program re-
sults in an average error of 210%, whereas blindly fast for-
warding results in an average 80% IPC error. Using our single
simulation point analysis we reduce the average IPC error to
18%. These results show that it is possible to reasonably cap-
ture the behavior of the most programs using, a very small
slice of execution.

Table 2 shows the actual simulation points chosen along
with the program counter (PC) and procedure name corre-
sponding to the start of the interval. If an input is not at-
tached to the program name, then the default ref input was
used. Columns 2 through 4 are in terms of the number of
intervals (each 100 million instruction long). The first col-
umn is the number of instructions executed by the program,
on the specific input, when run to completion. The second
column shows the end of initialization phase calculated as de-
scribed in [19]. The third column shows the single simulation
point automatically chosen as described abowe. This simu-

52

www.manaraa.com

6
, , N o n e 1 F F - B i l l i o n , , S i m P o i n t 1 Fu l l

0
m

4

2

0

4

o = @
, , , 7 " " 0

E ~ a ~ ~ a a ~ a a a E - -

3
0 2

1

0
N I~,I. ~ O m O O O O O N N O ~ 8 (I)
T" , , = ~ o 9 9 o o 7- 7- - ~ o ~

~ @ ' -~ to m = ~ ~ ~ ' -" " @ 3 a - ~ ~ ~ 8 x o ~ a m ~ a ~ a

F i g u r e 9: S i m u l a t i o n r e s u l t s s t a r t i n g s i m u l a t i o n at t h e s tar t o f t h e p r o g r a m (none) , b l i n d l y fast f o r w a r d i n g 1
b i l l i o n i n s t r u c t i o n s , u s i n g a s i n g l e s i m u l a t i o n p o i n t , and t h e I P C o f t h e ful l e x e c u t i o n o f t h e p r o g r a m .

lation point is used to fast forward to the point of desired
execution. Some simulators, debuggers, or tracing environ-
ments (e.g., gdb) provide the ability to fast forward based
upon a program PC, and the number of times that PC was
executed. We therefore, provide the instruction PC for the
start of the simulation point, the procedure that PC occurred
in, and the number of times that PC has to be executed in
order to arrive at the desired simulation point.

These results show that a single simulation point can be
accurate for many programs, but there is still a significant
amount of error for programs like bzip, gz ip and gcc. This
occurs because there are many different phases of execution
in these programs, and a single simulation point will not ac-
curately represent all of the different phases. To address this,
we used our clustering analysis to find multiple simulation
points to accurately capture these programs behavior, which
we describe next.

5.2 Multiple Simulation Points
To support multiple simulation points, the simulator can

be run from start to stop, only performing detailed simu-
lation on the selected intervals. Or the simulation can be
broken down into N simulations, where N is the number of
clusters found via analysis, and each simulation is run sepa-
rately. This has the further benefit of breaking the simulation
down into parallel components that can be distributed across
many processors. This is the methodology we use in our sim-
ulator. For both cases results from the separate simulation
points need to be weighed and combined to arrive at overall
performance for the program [4]. Care must be taken to com-
bine statistics correctly (simply averaging will give incorrect
results for statistics such as rates).

Knowing the clustering alone is not sufficient to enable
multiple point simulation because the cluster centers do not
correspond to actual intervals of execution. Instead, we must
first pick a representative for each cluster that will be used to
approximate the behavior of the the full cluster. In order to
pick this representative, we choose for each cluster the actual
interval that is closest to the center (centroid) of the cluster.

In addition to this, we weigh any use of this representative by
the size of the cluster it is representing. If a cluster has only
one point, i t 's representative will only have a small impact
on the overall outcome of the program.

Table 2 shows the multiple simulation points found for all
of the SPEC 2000 benchmarks. For these results we lim-
ited the number of clusters to be at most six for all but the
most complex programs. This was done, in order to limit the
number of simulation points, which also limits the amount of
warmup time needed to perform the overall simulation. The
cluster formation algorithm in Section 4 takes as an input
parameter the max number of clusters to be allowed. Each
simulation point contains two numbers. The first number is
the location of the simulation point in 100s of millions of in-
structions. The second number in parentheses is the weight
for that simulation point, which is used to create an overall
combined metric. Each simulation point corresponds to 100
million instructions.

Figure 10 shows the IPC results for multiple simulation
points. The first bar shows our single simulation points sim-
ulating for 100 million instructions. The second bar LongSP
chooses a single simulation point, but the length of simula-
tion is identical to the length used for multiple simulation
points (which may go up to 1 billion instructions). This is
to provide a fair comparison between the single simulation
points and multiple. The Multiple bar shows results using
the multiple simulation points, and the final bar is IPC for
full simulation. As in Figure 9, the closer the bar is to Fu l l ,
the better.

The results show that the average IPC error rate is re-
duced to 3% using multiple simulation'points, which is down
from 17% using the long single simulation point. This is sig-
nificantly lower than the average 80% error seen for blindly
fast forwarding. The benefits can be most clearly seen in
the programs bzip, gcc, ammp, and ga lge l . The reason that
the long contiguous simulation points do not do much better
is that they are constrained to only sample at one place in
the program. For many programs this is sufficient, but for
those with interesting long term behavior, such as bzip, it is

53

www.manaraa.com

~+0or mm,~.~ r m m i ~ i ~ l "--oxm~u,;1 oo[I Multiple SimPoints I
ammp 3265 24 109 026834 mm~v_update. 3026(13.8) 1774(31) 595(15.3) 1068(1.3) 2128(7.4)

1607(12.6) 2437(4.9) 3112(11.5) 2480(2.2)
applu 2238 3 2 1 8 0 018520 buts_ 624(22.1) 1625(22.5) 1956(18.8) 2234(6.6) 1380(15.5)

1507(14.5)
apsi 3479 3 3 4 0 9 03808c dctdxf_ 2107(5.6) 2863(14) 1007(70.7) 896(7.7) 1618(2)
art- l l0 417 75 341 00fbb0 match 82(42.9) 255(41.2) 50(15.8)
art-470 450 83 366 00f5d0 match 300(36.2) 46(14.7) 236(49.1)
bzip2-graphic 1435 4 719 01285c spec_putc 168(11.7) 1042(3.7) 430(7.5) 762(16.2) 106(15.3)

519(11.6) 872(8.2) 195(5.6) 148(2) 1435(18.2)
bzip2-program 1249 4 459 00ddd0 sortIt 140(11) 468(12.3) 78(6.2) 990(16) 445(7.4)

1005(7) 94(6.9) 606(14) 859(14.6) 341(4.7)
bzip2-source 1088 4 978 00d774 qSort3 395(16) 511(4.3) 64(29.1) 488(7.3) 530(8.6)

177(34.7)
crafty 1918 462 775 021730 SwapXray 123(25) 510(19.7) 664(22.7) 1123(32.5)
eon-rushmeier 578 140 404 04elb4 viewingHit 260(6.6) 238(23.7) 337(20.9) 435(35.6) 216(13.1)
equake 1315 35 813 012410 phi0 874(12.2) 1292(36.7) 463(12.2) 336(24.1) 3(3.2)

62(11.6)
facerec 2682 356 376 02dlf4 graphroutinesAo. 1976(60.1) 1528(2.5) 1935(3.9) 1398(29.2) 348(4.3)
fma3d 2683 192 2 5 4 2 0e3140 scatter_element. 112(7) 209(0.6) 842(68.4) 1600(11) 47(0.1)

509(13)
galgel 4093 3 2 4 9 2 02db00 syshtn_ 3511(5.5) 2081(11) 3466(11.2) 516(31.6) 2141(2.7)

2181(29) 2161(3.3) 1017(5.5)
gap 2695 639 675 050750 CollectGarb 1114(8.2) 1196(58.1) 88(12.7) 2189(14) 2609(7.1)
gcc-166 469 61 390 0d157c gen_rtx 238(6.4) 149(42.2) 30(21.3) 404(30.1)
gcc-200 1086 151 737 0ceb04 refers~o_regno. 8(45.8) 587(17.9) 921(10.9) 575(14.5) 1011(11)
gcc-expr 120 27 37 191fd0 validate_change 63(12.5) 81(15.8) 42(16.7) 25(4.2) 9(45.8)

88(5)
gcc-integrate 131 14 5 1198e0 find_single_use. 118(9.2) 41(27.5) 102(21.4) 9(20.6) 57(3.8)

73(17.6)
gcc-scilab 620 139 208 100d54 insert 255(54.2) 39(9.5) 231(13.2) 379(15.8) 170(7.3)
gzip-graphic 1037 158 654 009c00 fill_window 961(45.4) 87(28.5) 373(7.3) 1(0.1) 461(5.2)

566(13.4)
gzip-log 395 91 266 00d280 inflate_codes 207(24.1) 171(16.5) 157(16.7) 330(23.5) 71(19.2)
gzip-program 1688 112 1 1 9 0 009660 longest_match 228(22.7) 779(21.4) 472(9.1) 1410(20.4) 594(26.4)
gzip-random 821 152 624 00al4c deflate 484(0.9) 625(0.2) 5 8 0 (5 1) 811(16.8) 200(30.9)

1 (0 .1)
gzip-source 843 68 335 00a224 deflate 248(14.5) 327(13.2) 167(17.7) 656(27.8) 373(24.4)

720(2.5)
lucas 1423 11 546 021ef0 fit_square_ 982(21.4) 602(10.7) 1370(21.4) 458(28) 524(18.6)
mcf 618 15 554 00911c price_outAmpl k 268(39.6) 425(11) 205(30.1) 468(4.5) 316(10.8)

143(3.9)
mesa 2816 6 1 1 3 6 0a30f0 generalAextured. 1846(35.3) 2806(0.7) 398(35.3) 977(28.8)
mgrid 4191 21 3 2 9 3 0160f0 resid_ 43(24.2) 3459(22.8) 807(20.1) 3110(16.3) 2476(16.6)
parser 5467 388 1 1 4 7 01edfc region_valid 3342(25.1) 1771(29.8) 5102(19.7) 2008(19.4) 4772(6)
perlbmk-diff 399 56 142 07f974 regmatch 6(1) 355(62.7) 11(0.5) 397(0.8) 12(3.3)

239(31.8)
perlbmk-make 20 3 12 08268c Perl~unops~t. 1(5) 20(20) 6(75)
perlbmk-perf 290 69 6 08268c Perl~unops~t. 39(59.3) 207(40.7)
perlbmk-split 1108 162 451 07fc98 regmatch 704(44.9) 596(9.1) 232(21.7) 461(21.8) 501(2.6)
sixtrack 4709 250 3 0 4 4 167894 thin6d_ 6(1.7) 1719(98.3)
swim 2258 3 2 0 8 0 019130 calcl_ 1951(29.8) 38(14) 777(24.7) 710(13.8) 2101(17.8)
twolf 3464 7 1 0 6 7 041094 ucxxl 312(17) 2888(11.3) 3268(11.7) 961(20.4) 2054(39.5)
vortex-one 1189 36 272 06289c Mem_GetWord 536(17.1) 366(23.3) 115(8.2) 1068(17.2) 878(34.2)
vortex-three 1330 177 565 033688 Part_Delete 934(25.4) 1129(11.4) 96(8.9) 47(11.1) 586(17.8)

485(25.4)
vortex-two 1386 206 1 0 2 5 05e6fc Mem_NewRegion 635(7.6) 752(24.5) 554(21.9) 930(7.4) 360(15.3)

397(23.2)
vp~place 1122 4 593 0224ec get.non_update. 166(25.5) 857(21.6) 1(0.2) 362(12.8) 1057(12)

547(27.9)
vpr-route 840 12 477 025c80 get_heap.head 559(29.9) 89(28) 353(23.8) 3(2.6) 490(15.7)
wupwise 3496 11 3 2 3 8 01d680 zgemm_ 1811(43.3) 91(8) 3055(43.2) 1524(5.4)

T a b l e 2: S ing le s i m u l a t i o n p o i n t s for S P E C 2000 b e n c h m a r k s . C o l u m n s 2 t h r o u g h 4 are in t e r m s o f 100
m i l l i o n i n s t r u c t i o n e x e c u t e d . T h e l e n g t h o f full e x e c u t i o n is s h o w n , as we l l as t h e e n d o f i n i t i a l i z a t i o n . S P is
t h e s i n g l e s i m u l a t i o n p o i n t u s i n g t h e a p p r o a c h in th i s paper . T h e p r o c e d u r e in w h i c h t h e s i m u l a t i o n p o i n t
o c c u r r e d and its P C are a l so s h o w n . T h e last 6 d ig i t s o f P C o f e a c h S i m P o i n t is g i v e n in h e x , so t h e a d d r e s s
is f o r m e d f rom 1 2 0 x x x x x x . P r o c e d u r e n a m e s t h a t e n d in "." w e r e t r u n c a t e d due to space . T h e rest o f t h e
c o l u m n s l ist t h e m u l t i p l e s i m u l a t i o n p o i n t s f o u n d in 100s o f m i l l i o n s . T h e first n u m b e r is t h e s t a r t i n g p lace
o f t h e s i m u l a t i o n p o i n t r e l a t i v e t o t h e s t a r t of e x e c u t i o n . T h e s e c o n d n u m b e r s h o w s t h e w e i g h t g i v e n t o t h e
c l u s t e r t h a t s i m u l a t i o n p o i n t was t a k e n from, and is used w h e n w e i g h i n g t h e f inal re su l t s o f t h e s i m u l a t i o n .

54

www.manaraa.com

3

o2
- - I

0

, , S i m P o i n t ,o.-o.i L o n g S P ~ M u l t i p l e / F u l l

m m m m m m ~ ~, © E 3 3 ~ ~

, ~ .k V ' ~, ~- , , v " - p
,

3

- - 1

0
N N ~ O ID O O O O O N N ~ (D (D
T" T" o "0 O 0 0 0 0 , T" 0 -~ .l~

a:~ llO ~ "~ "~ PO ~X :~--'' O~ ~ "0 ~ m ~ '

F i g u r e 10: M u l t i p l e s i m u l a t i o n p o i n t r esu l t s . S i m u l a t i o n r e su l t s a re s h o w n for u s i n g a s ing le s i m u l a t i o n p o i n t
s i m u l a t i n g for 100 mi l l i on i n s t r u c t i o n s , L o n g S P chooses a s ing le s i m u l a t i o n p o i n t s i m u l a t i n g for t h e s a m e
l e n g t h of e x e c u t i o n as t h e m u l t i p l e p o i n t s i m u l a t i o n , s i m u l a t i o n u s i n g m u l t i p l e s i m u l a t i o n po i n t s , a n d t he full
e x e c u t i o n of t h e p r o g r a m .

impossible to approximate the full behavior.
Figure 11 is the average over all of the floating point pro-

grams (top graph) and integer programs (bottom graph). Er-
rors for IPC, branch miss rate, instruction and data cache
miss rates, and the unified L2 cache miss rate for the archi-
tecture presented in Section 2 are shown. The errors are with
respect to these metrics for the full length of simulation us-
ing SimpleScalar. Results are shown for starting simulation
at the start of the program None, blindly fast forwarding a
billion instructions FF-Billion, single simulation points of
duration 1 (SimPoint) and k (LongSP), and multiple simula-
tion points (Mult iple) .

The first thing to note is that using the just a single small
simulation point performs quite well on average across all of
the metrics when compared to blindly fast-forwarding. Even
though a single SimPoint does well, it is clearly beaten by
using the clustering based scheme presented in this paper
across all of the metrics examined. One thing that stands out
on the graphs is that the error rate of the instruction cache
and L2 cache appear to be high (especially for the integer
programs) despite the fact that our technique is doing quite
well in terms of overall performance. This is due to the fact
that we present here an arithmetic mean of the errors, and
there are several programs that have high error rates due to
the very small number of cache misses. If there are 10 misses
in the whole program, and we estimate there to be 100, that
will result in a error of 10X. We point to the overall IPC
as the most important metric for evaluation as it implicitly
weighs each of the metrics by it 's relative importance.

6. R E L A T E D W O R K
Time Varying Behavior of Programs: In [18], we provided

a first at tempt at showing the periodic patterns for all of
the SPEC 95 programs, and how these vary over time for
cache behavior, branch prediction, value prediction, address
prediction, IPC and RUU occupancy.

Training Inputs and Finding Smaller Representative In-
puts: One approach for reducing the simulation time is to
use the training or test inputs from the SPEC benchmark
suite. For many of the benchmarks, these inputs are either
(1) still too long to fully simulate, or (2) too short and place
too much emphasis on the s tar tup and shutdown parts of
the program's execution, or (3) inaccurately estimate behav-
ior such as cache accesses do to decreased working set size.

KleinOsowski et. al [12], have developed a technique where
they manually reduce the input sets of programs. The input
sets were developed using a range of approaches from trun-
cating of the input files to modification of source code to
reduce the number of times frequent loops were traversed.
For these input sets they develop, they make sure that they
have similar results in terms of IPC, cache, and instruction
mix.

Fast Forwarding and Check-pointing: Historically researchers
have simulated from the start of the application, but this
usually does not represent the majority of the program's be-
havior because it is still in the initialization phase. Recently
researchers have started to fast-forward to a given point in
execution, and then start their simulation from there, ide-
ally skipping over the initialization code to an area of code
representative of the whole. During fast-forward the simula-
tor simply needs to act as a functional simulator, and may
take full advantage of optimizations like direct execution. Af-
ter the fast-forward point has been reached, the simulator
switches to full cycle level simulation.

After fast-forwarding, the architecture state to be simu-
lated is still cold, and a warmup time is needed in order to
start collecting representative results. Efficiently warming
up execution only requires references immediately proceed-
ing the start of simulation. Haskins and Skadron [7] exam-
ined probabilistically determining the minimum set of fast-
forward transactions that nmst be executed for warm up to
accurately produce state as it would have appeared had the
entire fast-forward interval been used for warm up [7]. They

55

www.manaraa.com

None 1 FF-Billion ~ ,SimPoint ~ LongSP m Multiple

IPC Branch Data Cache Instr Cache U_~ Cache

. . . .100%
= 80%

~ ' 60%
¢2 40°/°
L. 2 0 %

W 0%

2.5x 1.3x 1 . lx 1.5x 3.5x 3.5x 32.4x

IPC Branch

F i g u r e 11: A v e r a g e e r r o r r e su l t s for t h e S P E C 2000
for I P C , b r a n c h m i s p r e d i c t i o n , i n s t r u c t i o n , d a t a a n d

Data Cache tnstr Cache L2 Cache

floating point (top) and integer (bottom) b e n c h m a r k s
un i f i ed L2 cache miss r a t e s .

recently examined using reuse analysis to determine how far
before full simulation warmup needs to occur [8].

An alternative to fast forwarding is to use check-pointing
to start the simulation of a program at a specific point. With
check-pointing, code is executed to a given point in the pro-
gram and the state is saved, or checkpointed, so that other
simulation runs can start there. In this way the initializa-
tion section can be run just one time, and there is no need
to fast forward past it each time. The architectural state
(e.g., caches, register file, branch prediction, etc) can either
be stored in the trace (if they are not going to change across
simulation runs) or can be warmed up in a manner similar
to described above.

Automatically Finding Where to Simulate: Our work is
based upon the basic block distribution analysis in [19] as
described in prior sections. Recent work on finding simula-
tion points for data cache simulations is presented by Lafage
and Seznec [13]. They proposed a technique to gather statis-
tics over the complete execution of the program and use them
to choose a representative slice of the program. They evalu-
ate two metrics, one which captures memory spatial locality
and one which captures memory temporal locality. They fur-
ther propose to create specialized metrics such as instruction
mix, control transfer, instruction characterization, and dis-
tr ibution of data dependency distances to further quantify
the behavior of the both the program's full execution and
the execution of samples.

Statistical Sampling: Several different techniques have been
proposed for sampling to estimate the behavior of the pro-
gram as a whole. These techniques take a number of contigu-
ous execution samples, referred to as clusters in [4], across the
whole execution of the program. These clusters are spread
out throughout the execution of the program in an at tempt
to provide a representative section of the application being
simulated. Conte et. al [4] formed multiple simulation points
by randomly picking intervals of execution, and then exam-
ining how these fit to the overall execution of the program for
several architecture metrics (IPC and branch and data cache
statistics). Our work is complementary to this, where we
provide a fast and metric independent approach for picking
multiple simulation points based just on basic block vector
similarity. When an architect gets a new binary to exam-

ine they can use our approach to quickly find the simulation
points, and then validate these with detailed simulation in
parallel with using the binary.

Statistical Simulation: Another technique to improve sim-
ulation time is to use statistical simulation [16]. Using sta-
tistical simulation, the application is run once and a syn-
thetic trace is generated that at tempts to capture the whole
program behavior. The trace captures such characteristics
as basic block size, typical register dependencies and cache
misses. This trace is then run for sometimes as little as 50-
100,000 cycles on a much faster simulator. Nussbaum and
Smith [15] also examined generating synthetic traces and us-
ing these for simulation and was proposed for fast design
space exploration. We believe the techniques presented in
this paper are complementary to the techniques of Oskin et
al. and Nussbaum and Smith in that more accurate profiles
can be determined using our techniques, and instead of at-
tempting to characterize the program as a whole it can be
characterized on a per-phase basis.

7. S U M M A R Y
At the heart of computer architecture and program opti-

mization is the need for understanding program behavior. As
we have shown, many programs have wildly different behav-
ior on even the very largest of scales (over the full lifetime of
the program). While these changes in behavior are drastic,
they are not without order, even in very complex applica-
tions such as gcc. In order to help future compiler and ar-
chitecture researchers in exploiting this large scale behavior,
we have developed a set of analytical tools that are capable
of automatically and efficiently analyzing program behavior
over large sections of execution.

The development of the analysis is founded on a hardware
independent metric, Basic Block Vectors, that can concisely
summarize the behavior of an arbitrary section of execution
in a program. We showed that by using Basic Block Vec-
tors one can capture the behavior of programs as defined by
several architectural metrics (such as IPC, and branch and
cache miss rates).

Using this framework, we examine the large scale behavior
of several complex programs like gzip, bzip, and gcc, and
find interesting patterns in their execution over time. The

55

www.manaraa.com

behavior that we find shows that code and program behav-
ior repeat over time. For example, in the input we exam-
ined in detail for gcc we see that program behavior repeats
itself every 23.6 billion instructions. Developing techniques
that automatically capture behavior on this scale is useful for
architectural, system level, and runtime optimizations. We
present an algorithm based on the identification of clusters
of basic block vectors that can find these repeating program
behaviors and group them into sets for further analysis. For
two of the programs gz ip and gcc we show how the cluster-
ing algorithm results line up nicely with the similarity matrix
and correlate with the time varying IPC and data cache miss
rates.

It is increasingly common for computer architects and com-
piler designers to use a small section of a benchmark to
represent the whole program during the design and evalu-
ation of a system. This leads to the problem of finding sec-
tions of the program's execution that will accurately repre-
sent the behavior of the full program. We show how our
clustering analysis can be used to automatically find multi-
pie simulation points to reduce simulation time and to accu-
rately model full program behavior. We call this clustering
tool to find single and multiple simulation points SimPoint.
SimPoint along with additional simulation point data can
be found at: h t t p : / / ~ , cs . ucsd. e d u / ' c a l d e r / s i m p o i n t / .
For the SPEC 2000 programs, we found that start ing simula-
tion at the start of the program results in an average error of
210% when compared to the full simulation of the program,
whereas blindly fast forwarding resulted in an average 80°A
IPC error. Using a single simulation point found, using our
basic block vector analysis, resulted in an average 17% IPC
error. When using the clustering algorithm to create multiple
simulation points we saw an average IPC error of 3%.

Automatically identifying the phase behavior using clus-
tering is beneficial for architecture, compiler, and operating
system optimizations. To this end, we have used the notion'of
basic block vectors and a random projection to create an ef-
ficient technique for identifying phases on-the-fly [20], which
can be efficiently implemented in hardware or software. Be-
sides identifying phases, this approach can predict not only
when a phase change is about to occur, but to which phase it
is about to transition. We believe that using phase informa-
tion can lead to new compiler optimizations with code tai-
lored to different phases of execution, multi-threaded archi-
tecture scheduling, power management, and other resource
distribution problems controlled by software, hardware or the
operating system.

Acknowledgments
We would like to thank Suleyman Sair and Chris Weaver for
their assistance with SimpleScalar, as well as Mark Oskin and
the anonymous reviewers for providing helpful comments on
this paper. This work was funded in part by D A R P A / I T O
under contract number DABT63-98-C-0045 and NSF CA-
R E E R grant No. CCR-9733278.

8. REFERENCES
[1] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene

expression patterns. Journal of Computational Biology,
6:281-297, 1999.

[2] C. M. Bishop. Neural Networks for Pattern Recognition.
Clarendon Press, Oxford, 1995.

[3] D. C. Burger and T. M. Austin. The simplescalar tool set,
version 2.0. Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[4] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing
state loss for effective trace sampling of superscalar
processors. In Proceedings of the 1996 International
Conference on Computer Design (ICCD), October 1996.

[5] S. Dasgupta. Experiments with random projection. In
Uncertainty in Artificial Intelligence: Proceedings of the
Sixteenth Conference (UAI-20OO), pages 143-151, San
Francisco, CA, 2000. Morgan Kaufmann Publishers.

[6] G. Hamerly and C. Elk, an. Learning the k in k-means.
Technical Report CS2002-0716, University of California, San
Diego, 2002.

[7] J. Haskins and K. Skadron. Minimal subset evaluation:
Rapid warm-up for simulated hardware state. In Proceedings
of the POOl International Conference on Computer Design,
September 2001.

[8] J. Haskins and K. Skadron. Memory reference reuse latency:
Accelerating sampled microaxchitecture simulations.
Technical Report CS-2002-19, U of Virginia, July 2002.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:
a review. ACM Computing Surveys, 31(3):264-323, 1999.

[10] J.-M. Jolion, P. Meer, and S. Bataouche. Robust clustering
with applications in computer vision. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(8):791-802,
1991.

[11] R. E. Kass and L. Wasserman. A reference Bayesian test for
nested hypotheses and its relationship to the schwarz
criterion. Journal of the American Statistical Association,
90(431):928-934, 1995.

[12] A. KleinOsowski, J. Flynn, N. Meares, and D. Lilja.
Adapting the spec 2000 benchmark suite for
simulation-based computer architecture research. In
Proceedings of the International Conference on Computer
Design, September 2000.

[13] T. Lafage and A. Seznec. Choosing representative slices of
program execution for microarchitecture simulations: A
preliminary application to the data stream. In Workload
Characterization of Emerging Applications, Kluwer
Academic Publishers, September 2000.

[14] J. MacQueen. Some methods for classification and analysis
of multivariate observations. In L. M. LeCam and
J. Neyman, editors, Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability,
volume 1, pages 281-297, Berkeley, CA, 1967. University of
California Press.

[15] S. Nussbaum and J. E. Smith. Modeling superscalar
processors via statistical simulation. In International
Conference on Parallel Architectures and Compilation
Techniques, September 2001.

[16] M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining
statistical and symbolic simulation to guide microprocessor
designs. In 27th Annual International Symposium on
Computer Architecture, June 2000.

[17] D. Pelleg and A. Moore. X-means: Extending K-means with
efficient estimation of the number of clusters. In Proceedings
of the 17th International Conf. on Machine Learning, pages
727-734. Morgan Kaufmann, San Francisco, CA, 2000.

[18] T. Sherwood and B. Calder. Time varying behavior of
programs. Technical Report UCSD-CS99-630, UC San
Diego, August 1999.

[19] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and
simulation points in applications. In International
Conference on Parallel Architectures and Compilation
Techniques, September 2001.

[20] T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. Technical Report CS2002-0710, UC San Diego,
June 2002.

[21] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In Proceedings of the
Conference on Programming Language Design and
Implementation, pages 196-205. ACM, 1994.

[22] O. Zamir and O. Etzioni. Web document clustering: A
feasibility demonstration. In Research and Development in
Information Retrieval, pages 46-54, 1998.

57

